Peter N. Saeta


Professor (1995)
PhD Harvard
Ultrafast physics, semiconductors, photovoltaics, energy and environment
Office
Keck 1231
Phone
909-607-3939 (office)
909-621-8024 (department)
909-621-8887 (fax)
E-Mail
saeta@g.hmc.edu
Page
http://www.physics.hmc.edu/~saeta/

Photovoltaics are the fastest-growing renewable energy source over the last three years and have the potential to supply a significant fraction of our electricity needs. Conventional silicon cells are made of thick crystals because silicon is a weak absorber in the infrared and much of the visible. Thin solar cells require less energy and material to make and may lead more swiftly to widespread deployment of photovoltaics.

A challenge facing thin cells is to maximize the absorption of the solar spectrum. We explore the enhancements to absorption in thin-film cells made possible by metallic nanoparticles and other structures designed to scatter incident radiation into guided modes propagating parallel to the cell's surface.

Requesting a letter of reference


Recent Publications

Jonas Leif Kaufman, Scott H. Tan, Kirklann Lau, Ashka Shailesh Shah, Robert G. Gambee, Christopher P. Gage, Lupe Maria MacIntosh, Albert Dato, Peter N. Saeta, Richard C. Haskell, and Todd C. Monson

Permittivity effects of particle agglomeration in ferroelectric ceramic-epoxy composites using finite element modeling

AIP Advances 8 (2018) 125020.
Eye candy

Peter N. Saeta, Harry A. Atwater, Vivian E. Ferry, Jeremy N. Munday, and Domenico Pacifici

How much can guided modes enhance absorption in thin solar cells?

Optics Express 17 (2009) 20975-20990.
Geometry.png
More publications