Click a publication’s row for more information

Abstract

We present a simple cryostat purpose built for use with surface-electrode ion traps, designed around an affordable, large cooling power commercial pulse tube refrigerator. A modular vacuum enclosure with a single vacuum space facilitates interior access and enables rapid turnaround and flexibility for future modifications. Long rectangular windows provide nearly 360 degrees of optical access in the plane of the ion trap, while a circular bottom window near the trap enables NA 0.4 light collection without the need for in-vacuum optics. We evaluate the system's mechanical and thermal characteristics and we quantify ion trapping performance by trapping 40Ca+, finding small stray electric fields, long ion lifetimes, and low ion heating rates.

Abstract

We present a microfabricated surface-electrode ion trap with a pair of integrated waveguides that generate a standing microwave field resonant with the 171Yb+ hyperfine qubit. The waveguides are engineered to position the wave antinode near the center of the trap, resulting in maximum field amplitude and uniformity along the trap axis. By calibrating the relative amplitudes and phases of the waveguide currents, we can control the polarization of the microwave field to reduce off-resonant coupling to undesired Zeeman sublevels. We demonstrate single-qubit π-rotations as fast as 1 μs with less than 6% variation in Rabi frequency over an 800 μm microwave interaction region. Fully compensating pulse sequences further improve the uniformity of X-gates across this interaction region.

Abstract

We report the design, fabrication and characterization of a microfabricated surface-electrode ion trap that supports controlled transport through the two-dimensional intersection of linear trapping zones arranged in a 90° cross. The trap is fabricated with very large scalable integration techniques which are compatible with scaling to a large quantum information processor. The shape of the radio-frequency electrodes is optimized with a genetic algorithm to reduce axial pseudopotential barriers and minimize ion heating during transport. Seventy-eight independent dc control electrodes enable fine control of the trapping potentials. We demonstrate reliable ion transport between junction legs and determine the rate of ion loss due to transport. Doppler-cooled ions survive more than \( 10^5 \) round-trip transits between junction legs without loss and more than 65 consecutive round trips without laser cooling.

Abstract

Recent advances in quantum information processing with trapped ions have demonstrated the need for new ion trap architectures capable of holding and manipulating chains of many (>10) ions. Here we present the design and detailed characterization of a new linear trap, microfabricated with scalable complementary metal-oxide-semiconductor (CMOS) techniques, that is well-suited to this challenge. Forty-four individually controlled dc electrodes provide the many degrees of freedom required to construct anharmonic potential wells, shuttle ions, merge and split ion chains, precisely tune secular mode frequencies, and adjust the orientation of trap axes. Microfabricated capacitors on dc electrodes suppress radio-frequency pickup and excess micromotion, while a top-level ground layer simplifies modeling of electric fields and protects trap structures underneath. A localized aperture in the substrate provides access to the trapping region from an oven below, permitting deterministic loading of particular isotopic/elemental sequences via species-selective photoionization. The shapes of the aperture and radio-frequency electrodes are optimized to minimize perturbation of the trapping pseudopotential. Laboratory experiments verify simulated potentials and characterize trapping lifetimes, stray electric fields, and ion heating rates, while measurement and cancellation of spatially-varying stray electric fields permits the formation of nearly-equally spaced ion chains

Abstract

In ion trap quantum information processing, efficient fluorescence collection is critical for fast, high-fidelity qubit detection and ion–photon entanglement. The expected size of future many-ion processors requires scalable light collection systems. We report on the development and testing of a microfabricated surface-electrode ion trap with an integrated high-numerical aperture (NA) micromirror for fluorescence collection. When coupled to a low-NA lens, the optical system is inherently scalable to large arrays of mirrors in a single device. We demonstrate the stable trapping and transport of 40Ca+ ions over a 0.63 NA micromirror and observe a factor of 1.9 enhancement of photon collection compared to the planar region of the trap.

Recent Publications by

Charlie Doret

Student authorFaculty author

1.

G. Vittorini, K. Wright, K. R. Brown, A. W. Harter, and Charlie Doret

Modular cryostat for ion trapping with surface-electrode ion traps

Review of Scientific Instruments 84 (2013) 043112.
PDF document
2013/Doret_RSI_84_043112
2.

C. M. Shappert, J. T. Merrill, K. R. Brown, J. M. Amini, C. Volin, Charlie Doret, H. Hayden, C. -S. Pai, K. R. Brown, and A. W. Harter

Spatially uniform single-qubit gate operations with near-field microwaves and composite pulse compensation

New Journal of Physics 15 (2013) 083503.
PDF document
2013/Doret_NJP_15_083053
3.

K. Wright, J. M. Amini, D. L. Faircloth, C. Volin, Charlie Doret, H. Hayden, C. -S. Pai, D. W. Landgren, D. Denison, T. Killian, R. E. Slusher, and A. W. Harter

Reliable transport through a microfabricated X-junction surface-electrode ion trap

New Journal of Physics 15 (2013) 033004.
PDF document
2013/Doret_NJP_15_033004
4.

Charlie Doret, J. M. Amini, K. Wright, C. Volin, T. Killian, A. Ozakin, D. Denison, H. Hayden, C. -S. Pai, R. E. Slusher, and A. W. Harter

Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation

New Journal of Physics 14 (2012) 073012.
PDF document
2012/Doret_NJP_14_073012
5.

J. T. Merrill, C. Volin, D. W. Landgren, J. M. Amini, K. Wright, Charlie Doret, C. -S. Pai, H. Hayden, T. Killian, D. L. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher

Demonstration of integrated microscale optics in surface-electrode ion traps

New Journal of Physics 13 (2011) 103005.
PDF document
2011/Doret_NJP_13_103005