
Chapter 7

Gravitation and Central-force
motion

In this chapter we describe motion caused by central forces, especially the
orbits of planets, moons, and artificial satellites due to central gravitational
forces. Historically, this is the most important testing ground of Newtonian
mechanics. In fact, it is not clear how the science of mechanics would have
developed if the Earth had been covered with permanent clouds, obscuring
the Moon and planets from view. And Newton’s laws of motion with central
gravitational forces are still very much in use today, such as in designing
spacecraft trajectories to other planets. Our treatment here of motion in
central gravitational forces is followed in the next chapter with a look at
motion due to electromagnetic forces, which can also be central in special
cases, but are commonly much more varied, partly because they involve both
electric and magnetic forces.

7.1 Central forces

A central force on a particle is directed toward or away from a fixed point in
three dimensions and is spherically symmetric about that point. In spherical
coordinates (r, θ, ϕ) the corresponding potential energy is also spherically
symmetric, with U = U(r) alone.

For example, the Sun, of massm1 (the source), exerts an attractive central
force

F = −Gm1m2

r2
r̂ (7.1)
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7.1. CENTRAL FORCES

FIGURE 7.1 : Newtonian gravity pulling a probe mass m2 towards a source mass m1.

on a planet of mass m2 (the probe), where r is the distance between their
centers and r̂ is a unit vector pointing away from the Sun (see Figure 7.1).
The corresponding gravitational potential energy is

U(r) = −
∫
F (r) dr = −Gm1m2

r
. (7.2)

Similarly, the spring-like central force from a fixed point (the source) on an
attached (probe) mass is

F = −kr = −k r r̂ (7.3)

and has a three-dimensional spring potential energy

U(r) = −
∫
F (r) dr =

1

2
k r2 . (7.4)

And the Coulomb force

F =
q1 q2

4πε0r2
r̂ (7.5)

on a charge q2 (the probe) due to a central charge q1 (the source) has a
Coulomb potential energy

U(r) = −
∫
F (r) dr =

1

4πε0

q1 q2

r
. (7.6)
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CHAPTER 7. GRAVITATION AND CENTRAL-FORCE MOTION

FIGURE 7.2 : Angular momentum conservation and the planar nature of central force orbits.

In all these cases, the force is along the direction of the line joining the centers
of the source point and the probe object.

The environment of a particle subject to a central force is invariant under
rotations about any axis through the fixed point at the origin, so the angular
momentum ` of the particle is conserved, as we saw in Chapters 4 and 5.
Conservation of ` also follows from the fact that the torque τ ≡ r × F = 0
due to a central force, if the fixed point is chosen as the origin of coordi-
nates. The particle therefore moves in a plane,1because its position vector r
is perpendicular to the fixed direction of ` = r × p (see Figure 7.2). Hence,
central force problems are essentially two-dimensional.

All this discussion assumes that the source of the central force is fixed in
position: the Sun, or the pivot of the spring, or the source charge q1 are all
at rest and lie at the origin of our coordinate system. What if the source
object is also in motion? If it is accelerating, as is typically the case due to
the reaction force exerted on it by the probe, the source then defines a non-
inertial frame, so Newton’s second law cannot be used in that source frame.

1The plane in which a particle moves can also be defined by two vectors: (i) the radius
vector to the particle from the force center, and (ii) the initial velocity vector of the
particle. Given these two vectors, as long as the central force remains the only force, the
particle cannot move out of the plane defined by these two vectors. (We are assuming
that the two vectors are noncolinear; if r and v0 are parallel or antiparallel the motion is
obviously only one-dimensional, along a radial straight line.)
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7.2. THE TWO-BODY PROBLEM

FIGURE 7.3 : The classical two-body problem in physics.

Let us then proceed to tackle the more general situation, the so-called two-
body problem involving two dynamical objects, both moving around, pulling
on each other through a force that lies along the line that joins their centers.

7.2 The two-body problem

We will now show that with the right choice of coordinates, the two-body
problem is equivalent to a one-body central-force problem. If we can solve
the one-body central-force problem, we can solve the two-body problem.

In the two-body problem there is a kinetic energy for each body and a
mutual potential energy that depends only upon the distance between them.
There are altogether six coordinates, three for the first body, r1 = (x1, y1, z1),
and three for the second, r2 = (x2, y2, z2), where all coordinates are measured
from a fixed point in some inertial frame (see Figure 7.3). The alternative
set of six coordinates used for the two-body problem are, first of all, three
center of mass coordinates

Rcm ≡
m1r1 +m2r2

m1 +m2

, (7.7)

already defined in Section 1.3: The CM vector extends from a fixed point in
some inertial frame to the center of mass of the bodies. There are also three
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CHAPTER 7. GRAVITATION AND CENTRAL-FORCE MOTION

relative coordinates

r ≡ r2 − r1, (7.8)

where the relative coordinate vector points from the first body to the second,
and its length is the distance between them.

We can solve for r1 and r2 in terms of Rcm and r:

r1 = Rcm −
m2

M
r and r2 = Rcm +

m1

M
r, (7.9)

where M = m1 +m2 is the total mass of the system. The total kinetic energy
of the two bodies, using the original coordinates for each, is2

T =
1

2
m1ṙ

2
1 +

1

2
m2ṙ

2
2, (7.10)

which can be reexpressed in terms of the new generalized velocities Ṙcm

and ṙ. The result is (See Problem 7-10)

T =
1

2
MṘ2

cm +
1

2
µṙ2 (7.11)

where

µ =
m1m2

M
(7.12)

is called the reduced mass of the two-body system (note that µ is less than
either m1 or m2.) The mutual potential energy is U(r), a function of the
distance r between the two bodies. Therefore the Lagrangian of the system
can be written

L = T − U =
1

2
MṘ2

cm +
1

2
µṙ2 − U(r) (7.13)

in terms of Rcm, r, and their time derivatives. One of the advantages of the
new coordinates is that the coordinates Rcm = (Xcm, Ycm, Zcm) are cyclic, so
the corresponding total momentum of the system P = MṘcm is conserved.
That is, the center of mass of the two-body system drifts through space with
constant momentum and constant velocity.

2Note that we adopt the linear algebra notation for a square of a vector V : V 2 ≡
V · V = |V |2 = V2.
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7.2. THE TWO-BODY PROBLEM

The remaining portion of the Lagrangian is

L =
1

2
µṙ2 − U(r) =

1

2
µ(ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2)− U(r), (7.14)

which has the same form as that for a single particle orbiting around a force
center, written in polar coordinates. We already know that this problem is
entirely two-dimensional since the angular momentum vector is conserved.
We can then choose our spherical coordinates so that the plane of the dynam-
ics corresponding to θ = π/2. This allows us to write a simpler Lagrangian
with two degrees of freedom only,

L =
1

2
µ(ṙ2 + r2θ̇2)− U(r), (7.15)

replacing ϕ by the usual plane polar coordinate θ. We then immediately
identify two constants of the motion:

(i) L is not an explicit function of time, so the HamiltonianH is conserved,
which in this case is also the sum of kinetic and potential energies:

E =
1

2
µ(ṙ2 + r2θ̇2) + U(r) = constant. (7.16)

(ii) The angle θ is cyclic, so the corresponding generalized momentum
pθ, which we recognize as the angular momentum of the particle, is also
conserved:

pθ ≡ ` = µ r2θ̇ = r (µrθ̇) = constant. (7.17)

This is the magnitude of the conserved angular momentum vector ` = r×p,
written in our coordinate system, with p = µv.

With only two degrees of freedom left over, represented by the coordinates
r and θ, the two conservation laws of energy and angular momentum together
form a complete set of first integrals of motion for a particle moving in
response to a central force or in a two-body problem. We will proceed in the
next section to solve the problem at hand explicitly in two different ways.

Before we do this, however, let us note an interesting attribute of our
setup. Our original two-body problem collapsed into a two-dimensional one-
body problem described through a position vector r pointing from the source
m1 to the probe m2. This position vector traces out the relative motion of
the probe about the source. Yet the source may be moving around and
accelerating. Although it may appear that one is incorrectly formulating
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CHAPTER 7. GRAVITATION AND CENTRAL-FORCE MOTION

physics from the perspective of a potentially non-inertial frame — that of the
source — this is not so. The elegance of the two-body central force problem
arises in part from the fact that the information about the non-inertial aspect
of the source’s perspective is neatly tucked into one parameter, µ: we are
describing the relative motion of m2 with respect to m1 by tracing out the
trajectory of a fictitious particle of mass µ = m1m2/(m1 + m2) about m1.
Our starting-point Lagrangian of the two-body problem was written from the
perspective of a third entity, an inertial observer. Yet, after a sequence of
coordinate transformations and simplifications, we have found the problem
is mathematically equivalent to describing the dynamics of an object of mass
µ about the source mass m1.

Note also that if we are in a regime where the source mass is much heavier
than the probe, m1 � m2, we then have µ ' m2. In such a scenario,
the source mass m1 is too heavy to be affected much by m2’s pull, so m1

essentially stays put in an inertial frame, with m2 orbiting around it. In this
regime we recover the naive interpretation that one is tracing out the relative
motion of a probe mass m2 from the perspective of an inertial observer sitting
with m1.

7.3 The effective potential energy

We start by analyzing the dynamics qualitatively, and in some generality,
using the two conservation equations

E =
1

2
µ(ṙ2 + r2θ̇2) + U(r) and ` = µr2θ̇. (7.18)

We have a choice to make: We can use these two equations to eliminate either
the time t or the angle θ. In this section we will be interested in using energy
diagrams to get a feel for the types of trajectories the probe can follow, so
we will now eliminate the angle θ between the two equations. By eliminating
θ we will also be able to find the time it takes for the probe to move from
one radius to another. In the next section we will eliminate t instead, which
will allow us to find the orbital shapes.

From the angular momentum conservation equation, we have θ̇ = `/mr2,
so energy conservation gives

1

2
µṙ2 + Ueff(r) = E (7.19)
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7.3. THE EFFECTIVE POTENTIAL ENERGY

where the “effective potential energy” is

Ueff(r) ≡ `2

2µr2
+ U(r). (7.20)

Angular momentum conservation has allowed us to convert the rotational
portion of the kinetic energy (1/2)µr2θ̇2 into a term `2/2µr2 that depends
on position alone, so it behaves just like a potential energy. Then the sum of
this term and the “real” potential energy U(r) (which is related to the cen-
tral force F (r) by F (r) = −dU(r)/dr) together form the effective potential
energy. The extra term is often called the “centrifugal potential”

Ucent(r) ≡
`2

2µr2
(7.21)

because its corresponding “force” Fcent = −dUcent/dr = +`3/µr3 tends to
push the orbiting particle away from the force center at the origin. By
eliminating θ between the two conservation laws, they combine to form an
equation that looks like a one-dimensional energy conservation law in the
variable r. So as long as we add in the centrifugal potential energy, we can
use all our experience with one-dimensional conservation-of-energy equations
to understand the motion. In general, we can tell that if our Ueff(r) has a
minimum

U ′eff |r=R = − `2

µr3
+ U ′(r)

∣∣∣∣
r=R

= 0 , (7.22)

the system admits circular orbits at r = R. Such an orbit would be stable if
U ′′eff > 0, unstable if U ′′eff < 0, and critically stable if U ′′eff = 0. This translates
to conditions of the form

U ′′eff |r=R = 3
`2

µr4
+ U ′′(r)

∣∣∣∣
r=R


> 0 Stable
< 0 Unstable
= 0 Critically stable

(7.23)

We can also determine whether the system admits bounded non-circular
orbits — where rmin < r < rmax — or unbounded orbits — where r can
extend all the way to infinity. Let us look at a couple of examples to see how
the effective energy diagram method can be very useful.
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CHAPTER 7. GRAVITATION AND CENTRAL-FORCE MOTION

FIGURE 7.4 : The effective potential for the central-spring potential.

7.3.1 Radial motion for the central-spring problem

The effective potential energy of a particle in a central-spring potential is

Ueff(r) =
`2

2µr2
+

1

2
k r2, (7.24)

which is illustrated (for ` 6= 0) in Figure 7.4. At large radii the attrac-
tive spring force Fspring = −dU(r)/dr = −k r dominates, but at small radii
the centrifugal potential takes over, and the associated “centrifugal force”,
given by Fcent = −dUcent/dr = `2/µr3 is positive, and therefore outward,
an inverse-cubed strongly repulsive force. We can already tell that this
system admits only bounded orbits: for every orbit, there is a minimum
and maximum values of r for the dynamics. In this case, we will see that
these bounded orbits are also closed. That is, after a 2π’s worth of evolution
in θ, the probe traces back the same trajectory. To find the explicit shape
of these trajectories — which will turn out to be ellipses — we will need to
integrate our differential equations. We will come back to this in Section 7.4.
For now, we can already answer interesting questions such as the time of
travel for the probe to move between two radii. Solving equation (7.19)
(with Ueff = `2/2µr2 + k r2) for ṙ2 and taking the square root gives

dr

dt
= ±

√
2

µ

(
E − k r2 − `2

2µr2

)
. (7.25)
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7.3. THE EFFECTIVE POTENTIAL ENERGY

Separating variables and integrating,

t(r) = ± µ

2

∫ r

r0

r dr√
Er2 − k r4 − `2/2µ

, (7.26)

where we choose t = 0 at some particular radius r0. We have reduced the
problem to quadrature.

In fact, in this case the integral can be carried out analytically3, so we
can find the time it takes for the probe to move from any radius to any other
radius.

7.3.2 Radial motion in central gravity

The effective potential energy of a particle in a central gravitational field is

Ueff(r) =
`2

2mr2
− GMm

r
, (7.27)

which is illustrated (for ` 6= 0) in Figure 7.5. At large radii the inward
gravitational force Fgrav = −dU(r)/dr = −GMm/r2 dominates, but at small
radii the centrifugal potential takes over, and the associated “centrifugal
force”, given by Fcent = −dUcent/dr = `2/mr3 is positive, and therefore
outward, an inverse-cubed strongly repulsive force that pushes the planet
away from the origin if it gets too close. Two very different types of orbit
are possible in this potential. There are bound orbits with energy E < 0,
and unbound orbits, with energy E ≥ 0. Bound orbits do not escape to
infinity. They include circular orbits with an energy Emin corresponding to
the energy at the bottom of the potential well, where only one radius is
possible, and there are orbits with E > Emin (but with E still negative),
where the planet travels back and forth between inner and outer turning
points while it is also rotating about the center. The minimum radius is
called the periapse for orbits around an arbitrary object, and specifically
the perihelion, perigee, and periastron for orbits around the Sun, the
Earth, and a star. The maximum radius, corresponding to the right-hand
turning point, is called the apoapse in general, or specifically the aphelion,
apogee, and apastron.

Unbound orbits are those with no outer turning point: these orbits extend
out infinitely far. There are orbits with E = 0 that are just barely unbound:

3See Problem 7-15
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FIGURE 7.5 : The effective gravitational potential.

in this case the kinetic energy goes to zero in the limit as the orbiting particle
travels infinitely far from the origin. And there are orbits with E > 0 where
the particle still has nonzero kinetic energy as it escapes to infinity. In fact,
we will see in the next section that orbits with energies E = Emin are circles,
those with Emin < E < 0 are ellipses, those with E = 0 are parabolas, and
those with E > 0 are hyperbolas.

Now we can tackle the effective one-dimensional energy equation in (r, t)
to try to obtain a second integral of motion. Our goal is to find r(t) or t(r),
so we will know how far a planet, comet, or spacecraft moves radially in a
given length of time, or long it takes any one of them to travel between two
given radii in its orbit.

Solving equation (7.19) (with Ueff = `2/2µr2 − Gm1m2/r) for ṙ2 and
taking the square root gives

dr

dt
= ±

√
2

µ

(
E +

Gm1m2

r
− `2

2µr2

)
. (7.28)

Separating variables and integrating,

t(r) = ± µ

2

∫ r

r0

r dr√
Er2 +Gm1m2r − `2/2µ

, (7.29)

where we choose t = 0 at some particular radius r0. We have reduced the
problem to quadrature. In fact, the integral can also be carried out analyt-
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ically, so we can calculate how long it takes a planet or spacecraft to travel
from one radius to another in its orbit (See Problem 7-16).

7.4 The shape of central-force orbits

We will first eliminate the time t from the equations, leaving only r and
θ. This will allow us to find orbital shapes. That is, we will find a single
differential equation involving r and θ alone, which will give us a way to find
the shape r(θ), the radius of the orbit as a function of the angle, or θ(r), the
angle as a function of the radius.

Beginning with the first integrals

E =
1

2
mṙ2 +

`2

2mr2
+ U(r) and ` = mr2θ̇, (7.30)

we have two equations in the three variables, r, θ, and t. When finding the
shape r(θ) we are unconcerned with the time it takes to move from place to
place, so we eliminate t between the two equations. Solving for dr/dt in the
energy equation and dividing by dθ/dt in the angular momentum equation,

dr

dθ
=
dr/dt

dθ/dt
= ±

√
2m

`2
r2
√
E − `2/2mr2 − U(r), (7.31)

neatly eliminating t. Separating variables and integrating,

θ =

∫
dθ = ± `√

2m

∫ r dr/r2√
E − `2/2mr2 − U(r)

(7.32)

reducing the shape problem to quadrature. Further progress in finding θ(r)
requires a choice of U(r).

7.4.1 Central spring-force orbits

A spring force F = −kr pulls on a particle of mass m toward the origin at
r = 0. The force is central, so the particle moves in a plane with a potential
energy U = (1/2)kr2. What is the shape of its orbit? From equation (7.32),

θ(r) = ± `√
2m

∫ r dr/r2√
E − `2/2mr2 − (1/2)kr2

. (7.33)
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Multiplying top and bottom of the integrand by r and substituting z = r2

gives

θ(z) = ± `

2
√

2m

∫ z dz/z√
−`2/2m+ Ez − (k/2)z2

. (7.34)

On the web or in integral tables we find that∫ z dz/z√
a+ bz + cz2

=
1√
−a

sin−1

(
bz + 2a

z
√
b2 − 4ac

)
(7.35)

where a, b, and c are constants, with a < 0. In our case a = −`2/2m, b = E,
and c = −k/2, so

θ − θ0 = ± `

2
√

2m

1√
`2/2m

sin−1

(
bz + 2a

z
√
b2 − 4ac

)
= ±1

2
sin−1

(
Er2 − `2/m

r2
√
E2 − k`2/m

)
(7.36)

where θ0 is a constant of integration. Multiplying by ±2, taking the sine of
each side, and solving for r2 gives the orbital shape equation

r2(θ) =
`2/m

E ∓ (
√
E2 − k`2/m) sin 2(θ − θ0)

. (7.37)

Note that the orbit is closed (since r2(θ+2π) = r2(θ)), and that it has a long
axis (corresponding to an angle θ where the denominator is small because the
second term subtracts from the first term) and a short axis (corresponding
to an angle where the denominator is large, because the second term adds
to the first term.) In fact, the shape r(θ) is that of an ellipse with r = 0 at
the center of the ellipse.4

The orbit is illustrated in Figure 7.6 for the case θ0 = 0 and with a minus
sign in the denominator. The effect of changing the sign or using a nonzero
θ0 is simply to rotate the entire figure about its center, while keeping the
“major” axis and the “minor” axis perpendicular to one another.

4A common way to express an ellipse in polar coordinates with r = 0 at the center is to
orient the major axis horizontally and the minor axis vertically, which can be carried out
by selecting the plus sign in the denominator and choosing θ0 = π/4. In this case the result
can be written r2 = a2b2/(b2 cos2 θ + a2 sin2 θ) where a is the semimajor axis (half the
major axis) and b is the semiminor axis. In Cartesian coordinates (x = r cos θ, y = r sin θ)
this form is equivalent to the common ellipse equation x2/a2 + y2/b2 = 1.
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FIGURE 7.6 : Elliptical orbits due to a central spring force F = −kr.

7.4.2 The shape of gravitational orbits

By far the most important orbital shapes are for central gravitational forces.
This is the problem that Johannes Kepler wrestled with in his self-described
“War on Mars.” Equipped with the observational data on the positions of
Mars from Tycho Brahe, he tried one shape after another to see what would
fit, beginning with a circle (which didn’t work), various ovals (which didn’t
work), and finally an ellipse (which did.) Now we can derive the shape
by two different methods, by solving the integral of equation (7.32)), and
(surprisingly enough!) by differentiating equation (7.31).

By direct integration

For a central gravitational force the potential energy U(r) = −GMm/r, so
the integral for θ(r) becomes

θ =

∫
dθ = ± `√

2m

∫
dr/r√

Er2 +GMmr − `2/2m
(7.38)

which by coincidence is the same integral we encountered in Section 7.4.1
(using there the variable z = r2 instead),

∫
dr/r√

a+ br + cr2
=

1√
−a

sin−1

(
br + 2a

r
√
b2 − 4ac

)
, (7.39)
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where now a = −`2/2m, b = GMm, and c = E. Therefore

θ − θ0 = ± sin−1

(
GMm2 − `2

ε GMm2r

)
, (7.40)

where θ0 is a constant of integration and we have defined the eccentricity

ε ≡
√

1 +
2E`2

G2M2m3
. (7.41)

We will soon see the geometrical meaning of ε. Taking the sine of θ− θ0 and
solving for r gives

r =
`2/GMm2

1± ε sin(θ − θ0)
. (7.42)

By convention we choose the plus sign in the denominator together with
θ0 = π/2, which in effect locates θ = 0 at the point of closest approach to
the center, called the periapse of the ellipse. This choice changes the sine
to a cosine, so

r =
`2/GMm2

1 + ε cos θ
. (7.43)

This equation gives the allowed shapes of orbits in a central gravitational
field. Before identifying these shapes, we will derive the same result by a
very different method that is often especially useful.

By differentiation

Returning to equation (7.31) with U(r) = −GMm/r,

dr

dθ
= ±

√
2m

`
r2

√
E − `2

2mr2
+
GMm

r
, (7.44)

we will now differentiate rather than integrate it. The result turns out to
be greatly simplified if we first introduce the inverse radius u = 1/r as the
coordinate. Then

dr

dθ
=
d(1/u)

dθ
= − 1

u2

du

dθ
. (7.45)

Squaring this gives(
du

dθ

)2

≡ (u′)2 =
2m

`2

(
E − `2u2

2m
+ (GMm)u

)
. (7.46)
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Differentiating both sides with respect to θ,

2u′u′′ = −2uu′ +
2GMm2

`2
u′. (7.47)

Then dividing out the common factor u′, since (except for a circular orbit)
it is generally nonzero, we find

u′′ + u =
GMm2

`2
. (7.48)

The most general solution of this linear second-order differential equation
is the sum of the general solution of the homogeneous equation u′′ + u = 0
and any particular solution of the full (inhomogeneous) equation. The most
general solution of u′′ + u = 0 can be written uH = A cos(θ − δ), where A
and δ are the two required arbitrary constants. A particular solution of the
full equation is the constant uP = GMm2/`2, so the general solution of the
full equation is

u = A cos(θ − δ) +GMm2/`2. (7.49)

The shape of the orbit is therefore

r = 1/u =
`2/GMm2

1 + ε cos θ
, (7.50)

where ε ≡ A`2/GMm2, and we have set δ = 0 so that again r is a minimum
at θ = 0. Equation (7.50) is the same as equation (7.43), the result we found
previously by direct integration. Even though it has merely reproduced a
result we already knew, the “trick” of substituting the inverse radius works
for inverse-square forces, and will be a useful springboard later when we
perturb elliptical orbits.

The shapes r(θ) given by equation (7.50) are known as “conic sections”,
since they correspond to the possible intersections of a plane with a cone,
as illustrated in Figure 7.7. There are only four possible shapes: (i) circles,
(ii) ellipses, (iii) parabolas, and (iv) hyperbolas. The shape equation can be
rewritten in the form

r =
rp(1 + ε)

1 + ε cos θ
(7.51)

where rp is the point of closest approach of the orbit to a fixed point called
the focus.
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FIGURE 7.7 : Conic sections: circles, ellipses, parabolas, and hyperbolas.

1. For circles, the eccentricity ε = 0, so the radius r = rp, a constant
independent of angle θ. The focus of the orbit is at the center of the
circle.

2. For ellipses, the eccentricity obeys 0 < ε < 1. Note from the shape
equation that in this case, as with a circle, the denominator cannot go
to zero, so the radius remains finite for all angles. There are two foci
in this case, and rp is the closest approach to the focus at the right in
Figure 7.8, where the angle θ = 0. Note that the force center at r = 0
is located at one of the foci of the ellipse for the gravitational force,
unlike the ellipse for a central spring force of Example 6-1, where the
force center was at the center of the ellipse.

The long axis of the ellipse is called the major axis, and half of this dis-
tance is the semimajor axis, denoted by the symbol a. The semiminor
axis, half of the shorter axis, is denoted by b. One can derive several
properties of ellipses from equation (7.43) in this case.

(a) The periapse and apoapse of the ellipse (the closest and farthest
points of the orbit from the right-hand focus) are given, in terms of
a and ε, by rp = a(1−ε) and ra = a(1+ε), respectively. Therefore
equation (7.50) can be written in the alternative form

r =
a(1− ε2)

1 + ε cos θ
. (7.52)
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FIGURE 7.8 : An elliptical gravitational orbit, showing the foci, the semimajor axis a, semimi-
nor axis b, the eccentricity ε, and the periapse and apoapse.

(b) The sum of the distances d1 and d2 from the two foci to a point
on the ellipse is the same for all points on the ellipse.5

(c) The distance between the two foci is 2aε, so the eccentricity of an
ellipse is the ratio of this interfocal distance to the length of the
major axis.

(d) The semiminor and semimajor axes are related by b = a
√

1− ε2.
(e) The area of the ellipse is A = πab.

3. For parabolas, the eccentricity ε = 1, so r → ∞ as θ → ±π, and the
shape is as shown in Figure 7.9. One can show that every point on a
parabola is equidistant from a focus and a line called the directrix,
also shown on the figure.

4. For hyperbolas, the eccentricity ε > 1, so r → ∞ as cos θ → −1/ε.
This corresponds to two angles, one between π/2 and π, and one be-
tween −π/2 and −π, as shown in Figure 7.9.

5Therefore the well-known property of an ellipse, that it can be drawn on a sheet of
paper by sticking two straight pins into the paper some distance D apart, and dropping
a loop of string over the pins, where the loop has a circumference greater than 2D. Then
sticking a pencil point into the loop as well, and keeping the loop taut, moving the pencil
point around on the paper, the resulting drawn figure will be an ellipse.
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Parabola

Hyperbola

FIGURE 7.9 : Parabolic and hyperbolic orbits

EXAMPLE 7-1: Orbital geometry and orbital physics

Now we can relate the geometrical parameters of a gravitational orbit, the eccentricity ε
and semimajor axis a, to the physical parameters, the energy E and angular momentum `.
The relationship follows from the two formulas for r(θ) we have written, namely

r =
`2/GMm2

1 + ε cos θ
and r =

a(1− ε2)

1 + ε cos θ
(7.53)

where

ε =

√
1 +

2E`2

G2M2m3
. (7.54)

We first consider circles and ellipses, and then parabolas and hyperbolas.
For ellipses or circles the equations match up if a(1− ε2) = `2/GMm2, so the semimajor

axis of an ellipse (or the radius of the circle) is related to the physical parameters by

a =
`2/GMm2

1− ε2
=

`2/GMm2

1− (1 + 2E`2/G2M2m3)
= −GMm

2E
, (7.55)

depending upon E but not `. In summary, for ellipses and circles the geometrical parameters
a, ε are related to the physical parameters by

a = −GMm

2E
and ε =

√
1 +

2E`2

G2M2m3
. (7.56)

These can be inverted to give the physical parameters in terms of the geometrical parameters:

E = −GMm

2a
and ` =

√
GMm2a(1− ε2). (7.57)

281



7.5. BERTRAND’S THEOREM

For parabolas and hyperbolas, the equations match if we let rp(1+ε) = `2/GMm2, where
ε = 1 for parabolas and ε > 1 for hyperbolas. So the geometric parameters (rp, ε) for these
orbits are given in terms of the physical parameters E and ` by

rp =
`2

(1 + ε)GMm2
ε =

√
1 +

2E`2

G2M2m3
, (7.58)

and inversely

E =
GMm(ε− 1)

2rp
` =

√
GMm2rp(1 + ε) (7.59)

in terms of (rp, ε). Note that for parabolas the eccentricity ε = 1, so the energy E = 0.

Finally, to summarize orbits in a central inverse-square gravitational field,
note that there are four, and only four, types of orbits possible, as illustrated
in Figure 7.10. There are circles (ε = 0), ellipses (0 < ε < 1), parabolas (ε =
1), and hyperbolas (ε > 1), with the gravitating object at one focus. Ellipses
and circles are closed, bound orbits with negative total energy. Hyperbolas
and parabolas are open, unbound orbits, which extend to infinity. Parabolic
orbits have zero total energy, and hyperbolic orbits have a positive total
energy. Circles (with ε = 0) and parabolas (with E = 0) are so unique
among the set of all solutions that mathematically one can say that they
form “sets of measure zero”, and physically one can say that they never occur
in Nature. The orbits of planets, asteroids, and some comets are elliptical;
other comets may move in hyperbolic orbits. There are no other orbit shapes
for a central gravitational field: There are, for example, no “decaying” or
“spiralling” purely gravitational orbits. 6 There are no

7.5 Bertrand’s Theorem

In the previous two sections, we saw central potentials that admit bounded
and unbounded orbits, and we found a way to calculate the orbital shapes.

6There do exist straight-line paths falling directly toward or away from the central
object, but these are really limiting cases of ellipses, parabolas, and hyperbolas. They
correspond to motion with angular momentum ` = 0, so the eccentricity ε = 1. If the
particle’s energy is negative this is the limiting case of an ellipse as ε → 1, if the energy
is positive it is the limiting case of a hyperbola as ε → 1, and if the energy is zero it is a
parabola with both ε = 1 and pθ = 0.
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FIGURE 7.10 : The four types of gravitational orbits

Bounded orbit are of particular interest, since they can potentially close, and
we showed that the orbits are closed for both of the special cases we treated,
the central linear spring force and the central inverse-squared gravitational
force. That is, after a certain finite number of revolutions, the probe starts
tracing out its established trajectory — thus closing its orbit.

How general is this property of closure? What about the orbits due
to other central forces? A beautiful and powerful result of mechanics is a
theorem due J. Bertrand which states the following:

The only central force potentials U(r) for which all bounded orbits are
closed are the following:

1. The gravitational potential U(r) ∝ 1/r.

2. The central-spring potential U(r) ∝ r2.

The theorem asserts that, of all possible functional forms for a potential
U(r), only two kinds lead to the interesting situation where all bounded
orbits close! And these two potentials are the familiar ones we have just
treated in detail. The theorem is not very difficult to prove: We leave it to
the Problems section at the end of the chapter.

So while it is interesting to find orbital shapes for other central forces, we
know from the theorem that in such cases the probe will not return to the
same point after completing one revolution.
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7.6 Orbital dynamics

As we saw already in Chapter 5, the young German theorist Johannes Ke-
pler, using the observational data on the motion of planets obtained by his
employer, the Danish astronomer Tycho Brahe, identified three rules that
govern the dynamics of planets in the heavens:

1. Planets move in elliptical orbits, with the Sun at one focus.

2. Planetary orbits sweep out equal areas in equal times.

3. The periods squared of planetary orbits are proportional to their semi-
major axes cubed.

It took about a century to finally understand the physical origins of these
three laws through the work of Isaac Newton. Armed with new powerful
tools in mechanics, we indeed confirm the first law of Kepler. To understand
the second and third, we will need to do a bit more work.

7.6.1 Kepler’s second law

There is an interesting consequence of angular momentum conservation for
arbitrary central forces. Take a very thin slice of pie extending from the
origin to the orbit of the particle, as shown in Figure 7.11. To a good ap-
proximation, becoming exact in the limit as the slice gets infinitely thin,
the area of the slice is that of a triangle, ∆A = (1/2) (base × height ) =
(1/2)r(r∆θ) = (1/2)r2∆θ. If the particle moves through angle ∆θ in time
∆t, then ∆A/∆t = (1/2)r2∆θ/∆t, so in the limit ∆t→ 0,

dA

dt
=

1

2
r2θ̇ =

µr2θ̇

2µ
=

`

2µ
= constant, (7.60)

since ` is constant. Therefore this areal velocity, the rate at which area is
swept out by the orbit, remains constant as the particle moves. This in turn
implies that the orbit sweeps out equal areas in equal times. Between t1 and
t2, for example,

A =

∫ t2

t1

(
dA

dt

)
dt =

∫ t2

t1

(
`

2µ

)
dt =

(
`

2µ

)
(t2 − t1), (7.61)
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FIGURE 7.11 : The area of a thin pie slice

which is the same as the area swept out between times t3 and t4 if t4 − t3 =
t2 − t1.

And hence we have derived Kepler’s second law. Kepler himself of course
did not know why the law is true; the concepts of angular momentum and
central forces had not yet been invented. In the orbit of the Earth around
the Sun, for example, the areas swept out in any 31-day month, say January,
July, or October, must all be the same. To make the areas equal, in January,
when the Earth is closest to the Sun, the pie slice must be fatter than in
July, when the Earth is farthest from the Sun. Note that the tangential
velocity vtan must be greater in January to cover the greater distance in the
same length of time, which is consistent with conservation of the angular
momentum ` = mr2θ̇ = mrvtan.

Although it was first discovered for orbiting planets, the equal-areas-in-
equal-times law is also valid for particles moving in any central force, in-
cluding asteroids, comets, and spacecraft around the Sun; the Moon and
artificial satellites around the Earth; and particles subject to a central at-
tractive spring force or a hypothetical central exponential repulsive force.

7.6.2 Kepler’s third law

Now we can find the period of elliptical orbits in central gravitational fields.
How long does it take planets to orbit the Sun? And how long does it take
the Moon, and orbiting spacecraft or other Earth satellite to orbit the Earth?
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From equation (7.61) in Section 6.1, the area traced out in time t2 − t1
is A = (`/2m)(t2 − t1). The period of the orbit, which is the time to travel
around the entire ellipse, is therefore

T = (2m/`)Atotal = (2m/`)πab =
2mπa2

√
1− ε2√

GMm2a(1− ε2)
(7.62)

since the area of the ellipse isAtotal = πab = a2
√

1− ε2, and ` =
√
GMm2a(1− ε2).

The formula for the period simplifies to give

T =
2π√
GM

a3/2. (7.63)

It is interesting that the period depends upon the semimajor axis of the orbit,
but not upon the eccentricity. Two orbits with the same semimajor axis have
the same period, even though their eccentricities are different.

And we thus arrived at Kepler’s third law: The periods squared of plane-
tary orbits are proportional to their semimajor axes cubed. That is, T 2 ∝ a3.

EXAMPLE 7-2: Halley’s Comet

This most famous comet is named after the English astronomer, mathematician, and
physicist Sir Edmund Halley (1656-1742), who calculated its orbit. The comet has been
known as far back as 240 BC and probably longer, and was later thought to be an omen when
it appeared earlier in the year of the Norman conquest at the Battle of Hastings in the year
1066. Mark Twain was born in 1835 in one of its appearances, and predicted (correctly) that
he would die in its next appearance in 1910. It last passed through the Earth’s orbit in 1986
and will again in 2061.

From the comet’s current period7 of T = 75.3 yrs and observed perihelion distance rp =
0.586 AU (which lies between the orbits of Mercury and Venus), we can calculate the orbit’s
(a) semimajor axis a, (b) aphelion distance ra, and (c) eccentricity ε. (Note that 1 AU is the
length of the semimajor axis of Earth’s orbit, 1 AU = 1.5 ×1011 m.)

(a) From Kepler’s third law, which applies to comets in bound orbits as well as to all planets
and asteroids, we can compare the period of Halley’s comet to the period of Earth’s orbit:
TH/TE = (aH/aE)3/2, so the semimajor axis has length

aH = aE(TH/TE)2/3 = 1 AU(75.3yrs/1yr)2/3 = 17.8 AU. (7.64)

7The period has varied considerably over the centuries, because the comet’s orbit is
easily influenced by the gravitational pulls of the planets, especially Jupiter and Saturn.
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Halley’s orbit

Jupiter’s orbitSaturn’s orbit
Uranus’s orbit

Neptune’s orbit

Pluto’s orbit

FIGURE 7.12 : The orbit of Halley’s comet

(b) The major axis therefore has length 2 × 17.8 AU = 35.6 AU, so the aphelion distance is
at ra = 35.8 AU −rp = 35.6 AU - 0.6 AU = 35.0 AU from the Sun. Halley’s Comet retreats
farther from the Sun than the orbit of Neptune.

(c) The perihelion distance is rp = a(1− ε), so the eccentricity of the orbit is

ε = 1− rp/a = 0.967. (7.65)

The orbit is highly eccentric, as you would expect, since the aphelion is thirty-six times as far
from the Sun as the perihelion.

The orbit of Halley’s comet is inclined at about 18◦ to the ecliptic, i.e., , at about 18◦ to

the plane of Earth’s orbit, as shown in Figure 7.12. It is also retrograde; the comet orbits the

Sun in the opposite direction from that of the planets, orbiting clockwise rather than counter-

clockwise looking down upon the solar system from above the Sun’s north pole.

7.6.3 Minimum-energy transfer orbits

What is the best way to send a spacecraft to another planet? Depending
upon what one means by “best”, many routes are possible. But the trajectory
requiring the least fuel (assuming the spacecraft does not take advantage of
“gravitational assists” from other planets along the way, which we will discuss
later), is a so-called minimum-energy transfer orbit or “Hohmann” transfer
orbit, which takes full advantage of Earth’s motion to help the spacecraft get
off to a good start.
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FIGURE 7.13 : A minimum-energy transfer orbit to an outer planet.

Typically the spacecraft is first lifted into low-Earth orbit (LEO), where
it circles the Earth a few hundred kilometers above the surface. Then at
just the right time the spacecraft is given a velocity boost “delta v” that
sends it away from the Earth and into an orbit around the Sun that reaches
all the way to its destination. Once the spacecraft coasts far enough from
Earth that the Sun’s gravity dominates, the craft obeys all the central-force
equations we have derived so far, including Kepler’s laws: In particular, it
coasts toward its destination in an elliptical orbit with the Sun at one focus.

Suppose that in LEO the rocket engine boosts the spacecraft so that it
ultimately attains a velocity v∞ away from the Earth. Then if the destination
is Mars or one of the outer planets, it is clearly most efficient if the spacecraft
is aimed so that this velocity v∞ is in the same direction as Earth’s velocity
around the Sun, because then the velocity of the spacecraft in the Sun’s
frame will have its largest possible magnitude, vE + v∞. The subsequent
transfer orbit towards an outer planet is shown in Figure 7.13. The elliptical
path is tangent to the Earth’s orbit at launch and tangent to the destination
planet’s orbit at arrival, just barely making it out to where we want it.

First we will find out how long it will take the spacecraft to reach its
destination, which is easily found using Kepler’s third law. Note that the
major axis of the craft’s orbit is 2aC = rE + rP , assuming the Earth E and
destination planet P move in nearly circular orbits. The semimajor axis of
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the transfer orbit is therefore

aC =
rE + rP

2
. (7.66)

From the third law, the period TC of the craft’s elliptical orbit obeys (TC/TE)2 =
(aC/rE)3, in terms of the period TE and radius rE of Earth’s orbit. The
spacecraft travels through only half of this orbit on its way from Earth to
the planet, however, so the travel time is

T = TC/2 =
1

2

(
rE + rP

2rE

)3/2

TE (7.67)

which we can easily evaluate, since every quantity on the right is known.
Now we can outline the steps required for the spacecraft to reach Mars or an
outer planet.

(1) We first place the spacecraft in a parking orbit of radius r0 around the
Earth. Ideally, the orbit will be in the same plane as that of the Earth
around the Sun, and the rotation direction will also agree with the direction
of Earth’s orbit. Using F = ma in the radial direction, the speed v0 of the
spacecraft obeys

GMEm

r2
0

= ma =
mv2

0

r0

, (7.68)

so v0 =
√
GME/r0.

(2) Then at just the right moment, a rocket provides a boost ∆v in the same
direction as v0, so the spacecraft now has an instantaneous velocity v0 + ∆v,
allowing it to escape from the Earth in the most efficient way. This will take
the spacecraft from LEO into a hyperbolic orbit relative to the Earth, since
we want the craft to escape from the Earth with energy to spare, as shown
in Figure 7.14. Then as the spacecraft travels far away, its potential energy
−GMEm/r due to Earth’s gravity approaches zero, so its speed approaches
v∞, where, by energy conservation,

1

2
mv2
∞ =

1

2
m(v0 + ∆v)2 − GMEm

r0

. (7.69)

Solving for v∞,

v∞ =
√

(v0 + ∆v)2 − 2GME/r0 =
√

(v0 + ∆v)2 − 2v2
0. (7.70)
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FIGURE 7.14 : Insertion from a parking orbit into the transfer orbit.

This is the speed of the spacecraft relative to the Earth by the time it has
essentially escaped Earth’s gravity, but before it has moved very far from
Earth’s orbit around the Sun.

(3) Now if we have provided the boost ∆v at just the right time, when the
spacecraft is moving in just the right direction, by the time the spacecraft
has escaped from the Earth its velocity v∞ relative to the Earth will be in
the same direction as Earth’s velocity vE around the Sun, so the spacecraft’s
velocity in the Sun’s frame of reference will be as large as it can be for given
v∞,

v = v∞ + vE =
√

(v0 + ∆v)2 − 2v2
0 + vE. (7.71)

The Earth has now been left far behind, so the spacecraft’s trajectory from
here on is determined by the Sun’s gravity alone. We have given it the largest
speed v we can in the Sun’s frame for given boost ∆v, to get it off to a good
start.

(4) The velocity v just calculated will be the speed of the spacecraft at the
perihelion point of some elliptical Hohmann transfer orbit. What speed must
this be for the transfer orbit to have the desired semimajor axis a? We can
find out by equating the total energy (kinetic plus potential) of the spacecraft
in orbit around the Sun with the specific energy it has in an elliptical orbit
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with the appropriate semimajor axis a. That is,

E = T + U =
1

2
mv2 − GMm

r
= −GMm

2a
, (7.72)

where m is the mass of the spacecraft, M is the mass of the Sun, r is the
initial distance of the spacecraft from the Sun (which is the radius of Earth’s
orbit), and a is the semimajor axis of the transfer orbit. Solving for v2, we
find

v2 = GM

(
2

r
− 1

a

)
, (7.73)

which is known historically as the vis-viva equation.8 The quantities on the
right are known, so we can calculate v, which is the Sun-frame velocity the
spacecraft must achieve.

EXAMPLE 7-3: A voyage to Mars

We will use this scenario to plan a trip to Mars by Hohmann transfer orbit. First, we can
use Kepler’s third law to find how long it will take for the spacecraft to arrive. The major
axis of the spacecraft’s orbit is 2aC = rE + rM , assuming the Earth and Mars move in nearly
circular orbits. The semimajor axis is therefore

aC =
rE + rM

2
=

1.50 + 2.28

2
× 108 km = 1.89× 108 km. (7.74)

The spacecraft travels through only half of this complete elliptical orbit on its way out to Mars,
so the travel time is9

T = TC/2 =
1

2

(
1.89

1.50

)3/2

(1 year) = 258 days. (7.75)

Now we will find the boost required in low-Earth orbit to insert the spacecraft into the
transfer orbit. We will first find the speed required of the spacecraft in the Sun’s frame just
as it enters the Hohmann ellipse. From the vis-viva equation,

v =

√
GM

(
2

r
− 1

a

)
= 32.7 km/s, (7.76)

8Vis-viva means “living force”, a term used by the German mathematician Gottfried
Wilhelm Leibniz in a now-obsolete theory. The term survives only in orbital mechanics.

9In his science fiction novel “Stranger in a Strange Land”, Robert Heinlein looks back
on the first human journeys to Mars: “an interplanetary trip ... had to be made in free-fall
orbits — from Terra to Mars, 258 Terran days, the same for return, plus 455 days waiting
at Mars while the planets crawled back into positions for the return orbit.”
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using G = 1.67 × 10−11 m3/kg s2, M = 1.99 × 1030 kg, r = 1.50 × 108 km, and a =
1.89 × 108 km. Compare this with the speed of the Earth in its orbit around the Sun,10

vE =
√
GM/r = 29.7 km/s.

Now suppose the spacecraft starts in a circular parking orbit around the Earth, with radius
r0 = 7000 km corresponding to an altitude above the surface of about 600 km. The speed
of the spacecraft in this orbit is v0 =

√
GME/r0 = 7.5 km/s. We then require that v∞, the

speed of the spacecraft relative to the Earth after it has escaped from the Earth, is v∞ = v−vE
= 32.7 km/s - 29.7 km/s = 3.0 km/s. Solving finally for ∆v in equation (7.71), we find that
the required boost for this trip is

∆v =
√
v2
∞ + 2v2

0 − v0

=
√

(3.0 km/s)2 + 2(7.4 km/s)2 − 7.5 km/s = 3.5 km/s. (7.77)

This boost of 3.5 km/s is modest compared with the boost needed to raise the spacecraft

from Earth’s surface up to the parking orbit in the first place. Then once the spacecraft reaches

Mars, the rocket engine must provide an additional boost to insert the spacecraft into a circular

orbit around Mars, or even to allow it to strike Mars’s atmosphere at a relatively gentle speed,

because the spacecraft, when it reaches the orbit of Mars in the Hohmann transfer orbit, will

be moving considerably more slowly than Mars itself in the frame of the Sun. Note that the

Hohmann transfer orbit will definitely take the spacecraft out to Mars orbit, but there are only

limited launch windows; we have to time the trip just right so that Mars will actually be at

that point in its orbit when the spacecraft arrives.

EXAMPLE 7-4: Gravitational assists

There is no more useful and seemingly magical application of the Galilean velocity trans-
formation of Chapter 1 than gravitational assists. Gravitational assists have been used to send
spacecraft to destinations they could not otherwise reach because of limited rocket fuel capa-
bilities, including voyages to outer planets like Uranus and Neptune using gravitational assists
from Jupiter and Saturn, and complicated successive visits to the Galilean satellite of Jupiter,
gravitationally bouncing from one to another.

Suppose we want to send a heavy spacecraft to Saturn, but it has only enough room for
fuel to make it to Jupiter. If the timing is just right and the planets are also aligned just right,
it is possible to aim for Jupiter, causing the spacecraft to fly just behind Jupiter as it swings
by that planet. Jupiter can pull on the spacecraft, turning its orbit to give it an increased
velocity in the Sun’s frame of reference, sufficient to propel it out to Saturn.

10Earth’s speed around the Sun actually varies from 29.28 km/s at aphelion to 30.27
km/s at perihelion. It is not surprising that the spacecraft’s speed of 32.7 km/s exceeds
vE ; otherwise it could not escape outwards toward Mars against the Sun’s gravity.

292



CHAPTER 7. GRAVITATION AND CENTRAL-FORCE MOTION

(a) (b)

FIGURE 7.15 : A spacecraft flies by Jupiter, in the reference frames of
(a) Jupiter (b) the Sun

The key here is “in the Sun’s frame of reference”, because in Jupiter’s rest frame the
trajectory of the spacecraft can be turned, but there can be no net change in speed before
and after the encounter. When the spacecraft is still far enough from Jupiter that Jupiter’s
gravitational potential energy can be neglected, the spacecraft has some initial speed v0 in
Jupiter’s rest frame. As it approaches Jupiter, the spacecraft speeds up, the trajectory is bent,
and the spacecraft then slows down again as it leaves Jupiter, once again approaching speed
v0. In Jupiter’s own rest frame, Jupiter cannot cause a net increase in the spacecraft’s speed.

However, because of the deflection of the spacecraft, its speed can increase in the Sun’s
rest frame, and this increased speed therefore gives the spacecraft a larger total energy in the
Sun’s frame, perhaps enough to project it much farther out into the solar system.

Consider a special case to see how this works. Figure 7.15(a) shows a picture of a space-
craft’s trajectory in the rest frame of Jupiter. The spacecraft is in a hyperbolic orbit about
Jupiter, entering from below the picture and being turned by (we will suppose) a 90◦ angle by
Jupiter. It enters with speed v0 from below, and exits at the same speed v0 toward the left.
It has gained no energy in Jupiter’s frame. Figure 7.15(b) shows the same trajectory drawn
in the Sun’s frame of reference. In the Sun’s frame, Jupiter is moving toward the left with
speed vJ , so the spacecraft’s speed when it enters from beneath Jupiter (i.e., , as it travels
away from the Sun, which is much farther down in the figure) can be found by vector addition:
It is vinitial =

√
v2

0 + v2
J , since v0 and vJ are perpendicular to one another. However, the

spacecraft’s speed when it leaves Jupiter is vfinal = v0 + vJ , since in this case the vectors
are parallel to one another. Obviously vfinal > vinitial; the spacecraft has been sped up in the
Sun’s frame of reference, so that it has more energy than before, and may be able to reach
Saturn as a result.

Clearly the trajectory must be tuned very carefully to get the right angle of flyby so that

the spacecraft will be thrown in the right direction and with the right speed to reach its final
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destination.

So much for our brief treatment of some of the highlights of orbital me-
chanics in Newtonian gravitational fields. However, in spite of the enormous
success of the theory in predicting the motion of planets, moons, comets, and
spacecraft, it nevertheless fails the test of relativity, so cannot be the final
theory!
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Problems

PROBLEM 7-1: Two satellites of equal mass are each in circular orbits around the Earth.
The orbit of satellite A has radius rA, and the orbit of satellite B has radius rB = 2rA. Find
the ratio of their (a) speeds (b) periods (c) kinetic energies (d) potential energies (e) total
energies.

PROBLEM 7-2: Halley’s comet passes through Earth’s orbit every 76 years. Make a close
estimate of the maximum distance Halley’s comet gets from the Sun.

PROBLEM 7-3: Two astronauts are in the same circular orbit of radius R around the Earth,
180◦ apart. Astronaut A has two cheese sandwiches, while Astronaut B has none. How can
A throw a cheese sandwich to B? In terms of the astronaut’s period of rotation about the
Earth, how long does it take the sandwich to arrive at B? What is the semimajor axis of the
sandwich’s orbit? (There are many solutions to this problem, assuming that A can throw the
sandwich with arbitrary speeds.)

PROBLEM 7-4: Suppose that the gravitational force exerted by the Sun on the planets were
inverse r - squared, but not proportional to the planet masses. Would Kepler’s third law still
be valid in this case?

PROBLEM 7-5: Planets in a hypothetical solar system all move in circular orbits, and the
ratio of the periods of any two orbits is equal to the ratio of their orbital radii squared. How
does the central force depend on the distance from this Sun?

PROBLEM 7-6: An astronaut is marooned in a powerless spaceship in circular orbit around the
asteroid Vesta. The astronaut reasons that puncturing a small hole through the spaceship’s
outer surface into an internal water tank will lead to a jet action of escaping water vapor
expanding into space. Which way should the jet be aimed so the spacecraft will descend in
the least time to the surface of Vesta? (In Isaac Asimov’s first published story Marooned off
Vesta, the jet was not oriented in the optimal way, but the ship reached the surface anyway.)

PROBLEM 7-7: A thrown baseball travels in a small piece or an elliptical orbit before it
strikes the ground. What is the semimajor axis of the ellipse? (Neglect air resistance.)

PROBLEM 7-8: Assume that the period of elliptical orbits around the Sun depends only upon
G,M (the Sun’s mass), and a, the semimajor axis of the orbit. Prove Kepler’s third law using
dimensional arguments alone.

PROBLEM 7-9: A spy satellite designed to peer closely at a particular house every day at
noon has a 24-hour period, and a perigee of 100 km directly above the house. (a) What is the
altitude of the satellite at apogee? (c) What is the speed of the satellite at perigee? (Earth’s
radius is 6400 km.)
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PROBLEM 7-10: Show that the kinetic energy

T =
1

2
m1ṙ

2
1 +

1

2
m2ṙ

2
2

of a system of two particles can be written in terms of their center-of-mass velocity Ṙcm and
relative velocity ṙ as

T =
1

2
MṘ2

cm +
1

2
µṙ2

where M = m1 +m2 is the total mass and µ = m1m2/M is the reduced mass of the system.

PROBLEM 7-11: Show that the shape r(θ) for a central spring force ellipse takes the standard
form r2 = a2b2/(b2 cos2 θ + a2 sin2 θ) if (in equation (7.37)) we use the plus sign in the
denominator and choose θ0 = π/4.

PROBLEM 7-12: Show that the period of a particle that moves in a circular orbit close to
the surface of a sphere depends only upon G and the average density ρ of the sphere. Find
what this period would be for any sphere having an average density equal to that of water.
(The sphere consisting of the planet Jupiter nearly qualifies!)

PROBLEM 7-13: (a) Communication satellites are placed into geosynchronous orbits; that
is, they typically orbit in Earth’s equatorial plane, with a period of 24 hours. What is the radius
of this orbit, and what is the altitude of the satellite above Earth’s surface? (b) A satellite
is to be placed in a synchronous orbit around the planet Jupiter to study the famous “red
spot”. What is the altitude of this orbit above the “surface” of Jupiter? (The rotation period
of Jupiter is 9.9 hours, its mass is about 320 Earth masses, and its radius is about 11 times
that of Earth.)

PROBLEM 7-14: The perihelion and aphelion of the asteroid Apollo are 0.964 × 108 km
and 3.473 × 108 km from the Sun, respectively. Apollo therefore swings in and out through
Earth’s orbit. Find (a) the semimajor axis (b) the period of Apollo’s orbit, given the Sun’s
mass M = 1.99× 1030 kg. (Apollo is only one of many “Apollo asteroids” that cross Earth’s
orbit. Some have struck the Earth in the past, and others will strike in the future unless we
find a way to prevent it.)

PROBLEM 7-15: The time for a probe of mass µ to move from one radius to another under
the influence of a central spring force was shown in the dhapter to be

t(r) = ± µ

2

∫ r

r0

r dr√
Er2 − k r4 − `2/2µ

, (7.78)

where E is the energy, k is the spring constant, and ` is the angular momentum. Evaluate the
integral in general, and find (in terms of given parameters) how long it takes the probe to go
from the maximum to the minimum value of r.

PROBLEM 7-16: (a) Evaluate the integral in equation (7.29)) to find t(r) for a particle
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moving in a central gravitational field. (b) From the results, derive the equation for the period
T = (2π/

√
GMa3/2 in terms of the semimajor axis a for particles moving in elliptical orbits

around a central mass.

PROBLEM 7-17: The Sun moves at a speed vS = 220 km/s in a circular orbit of radius
rS = 30, 000 light years around the center of the Milky Way galaxy. The Earth requires
TE = 1 year to orbit the Sun, at a radius of 1.50 × 1011 m. (a) Using this information,
find a formula for the total mass responsible for keeping the Sun in its orbit, as a multiple of
the Sun’s mass M0, in terms also of the parameters vS , rS , TE , and rE . Note that G is not
needed here! (b) Find this mass numerically.

PROBLEM 7-18: The two stars in a double-star system circle one another gravitationally,
with period T . If they are suddenly stopped in their orbits and allowed to fall together, show
that they will collide after a time T/4

√
2.

PROBLEM 7-19: A particle is subjected to an attractive central spring force F = −kr. Show,
using Cartesian coordinates, that the particle moves in an elliptical orbit, with the force center
at the center of the eilipse, rather than at one focus of the ellipse.

PROBLEM 7-20: Use equation (7.32) to show that if the central force on a particle is F = 0,
the particle moves in a straight line.

PROBLEM 7-21: Find the central force law F (r) for which a particle can move in a spiral
orbit r = kθ2, where k is a constant.

PROBLEM 7-22: Find two second integrals of motion in the case F (r) = −k/r3, where k
is a constant. Describe the shape of the trajectories.

PROBLEM 7-23: A particle of mass m is subject to a central force F (r) = −GMm/r2 −
k/r3, where k is a positive constant. That is, the particle experiences an inverse-cubed
attractive force as well as a gravitational force. Show that if k is less than some limiting value,
the motion is that of a precessing ellipse. What is this limiting value, in terms of m and the
particle’s angular momentum?

PROBLEM 7-24: Find the allowed orbital shapes for a particle moving in a repulsive inverse-
square central force. These shapes would apply to α - particles scattered by gold nuclei, for
example, due to the repulsive Coulomb force between them.

PROBLEM 7-25: A particle moves in the field of a central force for which the potential
energy is U(r) = krn, where both k and n are constants, positive, negative, or zero. For what
range of k and n can the particle move in a stable, circular orbit at some radius?

PROBLEM 7-26: A particle of mass m and angular momentum ` moves in a central spring-
like force field F = −kr. (a) Sketch the effective potential energy Ueff(r). (b) Find the radius
r0 of circular orbits. (c) Find the period of small oscillations about this orbit, if the particle is
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perturbed slightly from it. (d) Compare with the period of rotation of the particle about the
center of force. Is the orbit closed or open for such small oscillations?

PROBLEM 7-27: Find the period of small oscillations about a circular orbit for a planet of
mass m and angular momentum ` around the Sun. Compare with the period of the circular
orbit itself. Is the orbit open or closed for such small oscillations?

PROBLEM 7-28: (a) A binary star system consists of two stars of masses m1 and m2 orbiting
about one another. Suppose that the orbits of the two stars are circles of radii r1 and r2,
centered on their center of mass. Show that the period of the orbital motion is given by

T 2 =
4π2

G(m1 +m2)
(r1 + r2)2.

(b) The binary system Cygnus X-1 consists of two stars orbiting about their common center
of mass with orbital period 5.6 days. One of the stars is a supergiant with a mass 25 times
that of the Sun. The other star is believed to be a black hole with a mass of about 10 times
the mass of the Sun. From the information given, determine the distance between these stars,
assuming that the orbits are circular.

PROBLEM 7-29: A spacecraft is in a circular orbit of radius r about the Earth. What is the
minimum ∆v (in km/s) the rocket engines must provide to allow the craft to escape from the
Earth?

PROBLEM 7-30: A spacecraft is designed to dispose of nuclear waste either by carrying it
out of the solar system or by crashing it into the Sun. Which mission requires the least rocket
fuel? (Do not include possible gravitational boosts from other planets or worry about escaping
from Earth’s gravity.)

PROBLEM 7-31: After the engines of a 100 kg spacecraft have been shut down, the space-
craft is found to be a distance 107 m from the center of the Earth, moving with a speed
of 7000 m/s at an angle of 45◦ relative to a straight line from the Earth to the spacecraft.
(a) Calculate the total energy and angular momentum of the spacecraft. (b) Determine the
semimajor axis and the eccentricity of the spacecraft’s geocentric trajectory.

PROBLEM 7-32: A 100 kg spacecraft is in circular orbit around the Earth, with orbital radius
104 km and with speed 6.32 km/s. It is desired to turn on the rocket engines to accelerate
the spacecraft up to a speed so that it will escape the Earth and coast out to Jupiter. Use a
value of 1.5×108 km for the radius of Earth’s orbit, 7.8×108 km for Jupiter’s orbital radius,
and a value of 30 km/s for the velocity of the Earth. Determine (a) the semimajor axis of the
Hohmann transfer orbit to Jupiter; (b) the travel time to Jupiter; (c) the heliocentric velocity
of the spacecraft as it leaves the Earth; (d) the minimum ∆v required from the engines to
inject the spacecraft into the transfer orbit.

PROBLEM 7-33: The Earth-Sun L5 Lagrange point is a point of stable equilibrium that
trails the Earth in its heliocentric orbit by 60◦ as the Earth (and spacecraft) orbit the Sun.
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Some gravity wave experimenters want to set up a gravity wave experiment at this point. The
simplest trajectory from Earth puts the spacecraft on an elliptical orbit with a period slightly
longer than one year, so that, when the spacecraft returns to perihelion, the L5 point will be
there. (a) Show that the period of this orbit is 14 months. (b) What is the semimajor axis of
this elliptical orbit? (c) What is the perihelion speed of the spacecraft in this orbit? (d) When
the spacecraft finally reaches the L5 point, how much velocity will it have to lose (using its
engines) to settle into a circular heliocentric orbit at the L5 point?

PROBLEM 7-34: In Stranger in a Strange Land, Robert Heinlein claims that travelers to
Mars spent 258 days on the journey out, the same for return, “plus 455 days waiting at Mars
while the planets crawled back into positions for the return orbit.” Show that travelers would
have to wait about 455 days, if both Earth-Mars journeys were by Hohmann transfer orbits.

PROBLEM 7-35: A spacecraft approaches Mars at the end of its Hohmann transfer orbit. (a)
What is its velocity in the Sun’s frame, before Mars’s gravity has had an appreciable influence
on it? (b) What ∆v must be given to the spacecraft to insert it directly from the transfer
orbit into a circular orbit of radius 6000 km around Mars?

PROBLEM 7-36: A spacecraft parked in circular low-Earth orbit 200 km above the ground
is to travel out to a circular geosynchronous orbit, of period 24 hours, where it will remain.
(a) What initial ∆v is required to insert the spacecraft into the transfer orbit? (b) What final
∆v is required to enter the synchronous orbit from the transfer orbit?

PROBLEM 7-37: A spacecraft is in a circular parking orbit 300 km above Earth’s surface.
What is the transfer-orbit travel time out to the Moon’s orbit, and what are the two ∆v′s
needed? Neglect the Moon’s gravity.

PROBLEM 7-38: A spacecraft is sent from the Earth to Jupiter by a Hohmann transfer orbit.
(a) What is the semimajor axis of the transfer ellipse? (b) How long does it take the spacecraft
to reach Jupiter? (c) If the spacecraft actually leaves from a circular parking orbit around the
Earth of radius 7000 km, find the rocket ∆v required to insert the spacecraft into the transfer
orbit.

PROBLEM 7-39: Find the Hohmann transfer-orbit time to Venus, and the ∆v′s needed to
leave an Earth parking orbit of radius 7000 km and later to enter a parking orbit around Venus,
also of r = 7000 km. Sketch the journey, showing the orbit directions and the directions in
which the rocket engine must be fired.

PROBLEM 7-40: Consider an astronaut standing on a weighing scale within a spacecraft.
The scale by definition reads the normal force exerted by the scale on the astronaut (or,
by Newton’s third law, the force exerted on the scale by the astronaut.) By the principle of
equivalence, the astronaut can’t tell whether the spacecraft is (a) sitting at rest on the ground in
uniform gravity g, or (b) is in gravity-free space, with uniform acceleration a numerically equal
to the gravity g in case (a). Show that in one case the measured weight will be proportional
to the inertial mass of the astronaut, and in the other case proportional to the astronaut’s
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gravitational mass. So if the principle of equivalence is valid, these two types of mass must
have equal magnitudes.

PROBLEM 7-41:Bertrand’s theorem In Section 7.5, we stated a powerful theorem that asserts
that the only potentials for which all bounded orbits are closed are: Ueff ∝ r2 and Ueff ∝ r−1.
To prove this theorem, let us proceed in steps. If a potential is to have bound orbits, the
effective potential must have a minimum since a bound orbit is a dip in the effective potential.
The minimum is at r = R given by

U ′(R) =
`2

µ r2
(7.79)

as shown in equation (7.22). This corresponds to a circular orbit which is stable if

U ′′(R) +
3

R
U ′(R) > 0 (7.80)

as shown in equation (7.23)). Consider perturbing this circular orbit so that we now have
an rmin and an rmax about r = R. Define the apsidal angle ∆ϕ as the angle between the
point on the perturbed orbit at rmin and the point at rmax. Assume (R − rmin/R � 1 and
(rmax −R)/R� 1. Note that closed orbits require

∆ϕ = 2π
m

n
(7.81)

for integer m and n and for all R.

• Show that

∆ϕ = π

√
U ′(R)

3U ′(R) +RU ′′(R)
. (7.82)

Notice that the argument under the square root is always positive by virtue of the
stability of the original circular orbit.

• In general, any potential U(r) can be expanded in terms of positive and negative powers
of r, with the possibility of a logarithmic term

U(r) =

∞∑
n=−∞

an
rn

+ a ln r . (7.83)

Show that, to have the apsidal angle independent of r, we must have: U(r) ∝ r−α for
α < 2 and α 6= 0, or U(r) ∝ ln r. Show that the value of ∆ϕ is then

∆ϕ =
π√

2− α
, (7.84)

where the logarithmic case corresponds to α = 0 in this equation.
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• Show that if limr→∞ U(r) =∞, we must have limE→∞∆ϕ = π/2. This corresponds
to the case α < 0. We then must have

∆ϕ =
π√

2− α
=
π

2
, (7.85)

or α = −2, thus proving one of the two cases of the theorem.

• Show that for the case 0 ≤ α, we must have limE→−∞∆ϕ = π/(2 − α). This then
implies

∆ϕ =
π√

2− α
=

π

2− α
(7.86)

which leaves only the possibility α = 1, completing the proof of the theorem.
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BEYOND EQUATIONS

James Clerk Maxwell (1831 - 1879)

J. C. Maxwell was born in Edinburgh, Scotland.
He was educated at home, first by his mother, who
died when Maxwell was eight, and then by his fa-
ther. He entered the University of Edinburgh at
age sixteen, followed by Cambridge University at
age nineteen. After gaining his degree he obtained
a professorship at Aberdeen University, where he
taught for four years before he was laid off due
to a merger of two institutions. He then became a
professor at King’s College London, where he spent
five years: this was the most productive period of
his life.

Building upon physical concepts of Carl Friedrich Gauss, Michael Faraday,
and many others, Maxwell formulated the mathematical theory of electromag-
netism, uniting electrical and magnetic phenomena, and showing that light is an
electromagnetic wave. This grand unification was the most important advance
in physics during the nineteenth century. Maxwell also made outstanding contri-
butions to statistical mechanics, the theory of color, the viscosity of gases, and
dimensional analysis. He wrote a textbook, Theory of Heat, and an elementary
monograph, Matter and Motion.

Maxwell resigned his chair at King’s College in 1865 and returned to his home
in Edinburgh. In 1871 he was named the first Cavendish Professor at Cambridge;
he remained there for seven years, building up the newly-established Cavendish
Laboratory until his death at age 48 from the same form of cancer that had killed
his mother. As of 2011, Cavendish researchers have won 29 Nobel Prizes.

In the view of many, Maxwell is the third greatest physicist of all time. Bi-
ographies of the first two can be found in the first two chapters of this book.
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