
Rutherford Scattering
Wednesday, 16 October 2013

Rutherford scattering is an example of orbital motion in
a repulsive 1/r potential, so we can carry over all the the-
ory we have developed for planetary motion.
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Ernest Rutherford was studying alpha radiation (which we have come to under-
stand is the emission of a helium nucleus comprising two protons and two neu-
trons when an unstable heavy nucleus decays) when an enterprising undergrad-
uate, Ernest Marsden, asked for a research position. Rutherford paired him with
graduate student Hans Geiger and took advantage of Marsden’s young eyes to
look for the faint flashes of light from a phosphor screen caused by incident al-
pha particles. To keep Marsden busy, Rutherford told him to look for scattering
of alpha particles from a gold foil in the backward direction, suspecting that it
would take Marsden some time to be convinced that nothing was happening.
After all, the prevailing view of the structure of matter was J.J. Thomson’s plum-
pudding model, in which electrons were the low-mass plums swimming in a sea
of positive pudding. To Rutherford’s astonishment, Marsden was fairly quickly
able to observe back-scattered alpha particles.

It was quite the most incredible event that has ever happened to
me in my life. It was almost as incredible as if you fired a 15-inch
shell at a piece of tissue paper and it came back and hit you.

(a) Ernest Marsden, 1921 (b) Ernest Rutherford and Hans Geiger, 1913

Figure 1: The discoverers of the nucleus, somewhat after the 1909 gold-foil experiment.
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Plan of attack

An alpha particle (mass m, charge Z ′e, speed v0) is incident at impact parameter
b on a (gold) nucleus of charge Z e at rest in the lab frame.

1. Use µ, v0, b, Z , and Z ′ to find pθ and E .

2. Solve u(θ) for u → 0 (i.e., r →∞), which should give two angles.

3. Find how the range of b from b to b + db maps into scattering angle Θ to
Θ+ dΘ.

4. The differential cross section is then defined by 2πb db = σ(Θ)dΩ =
σ(Θ) 2πsinΘdΘ.

Θ
bv

Figure 2: Scattering geometry

Attack!

Far from the nucleus, we may safely approximate that the alpha particle moves
freely with energy and angular momentum given by

EL = 1

2
mv2

0 and pθ = mbv0

in the lab frame. In the center of mass frame, however, the nucleus moves to the
left while the alpha particle moves to the right and the total energy and angular
momentum are given by

E = 1

2
µv2

0 and pθ =µbv0

We will solve the problem in the center of mass frame, and then worry about
what implication for the scattering angle it might have when we transform back
to the lab.
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As it approaches the nucleus (really, after it has penetrated most of the electron
cloud surrounding the nucleus), the alpha particle is subject to a potential of
interaction given by

U (r ) = Z Z ′e2

4πε0r
= k

r
= ku

where u = 1/r and k = Z Z ′e2/4πε0. For an α particle scattering off a gold nu-
cleus, Z = 2 and Z ′ = 79.

From the previous notes, we had

∓du

dθ
= µ

pθ

√√√√ 2

µ
(E −ku)−

p2
θ

µ2 u2

Squaring this expression and rearranging slightly, we get(
pθ
µ

)2 (
u′2 +u2)= 2

µ
(E −ku)

where u′ = du
dθ . Differentiating with respect to θ yields

2u′u′′+2uu′ =−2µ

p2
θ

ku′ =⇒ u′′+u =−µk

p2
θ

A possible solution to this equation is

u =−µk

p2
θ

(1+εcosθ)

where I have selected θ = 0 as the symmetry line and expressed the amplitude of
the sinusoidal portion in terms of the eccentricity, ε.

Now, u = 1/r is necessarily positive, which
means that we must have ε> 1 and εcosθ <
1. The asymptotes are the values of θ

at which r diverges, which means u →
0. These occur at εcosθ = −1, or θ =
cos−1(−1/ε). The angle of deviation of the
beam,Θ, is thus given by

Θ= 2
[

cos−1(−1/ε)− π

2

]
θ
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Rearranging slightly, we have

Θ

2
+ π

2
= cos−1(−1/ε)

cos

(
Θ

2
+ π

2

)
=−1

ε

sin(Θ/2) =−1/ε

We have shown that

ε2 = 1+ 2p2
θ

E

µk2 ≈ 1+
(

2Eb

k

)2

Combining these relations to eliminate the eccentricity gives

1

sin2(Θ/2)
= 1+

(
2Eb

k

)2

Taking now the differential of each side gives

− cos(Θ/2)

sin3(Θ/2)
dΘ=

(
2E

k

)2

2b db

As described in point 4 of the plan of attack, the differential cross section is given
by

σ(Θ) = 2πb db

2πsinΘ
= b

2sin(Θ/2)cos(Θ/2)

db

dΘ
=−1

2

(
k

2E

)2 1

sin4(Θ/2)
or

σ(Θ) =
(

Z Z ′e2

8πε0E

)2

csc4(Θ/2) (1)

For those of you who studied Rutherford scattering in Physics 54, this is the ex-
pression you put to the test. If you are somewhat discomfited by the strong sin-
gularity asΘ→ 0, fret not. It says that the total cross section,

σ=
∫
σ(Θ)dΩ

diverges. This merely reports that there is no value of impact parameter b for
which there is no deviation, since the Coulomb interaction does not have a hard
cutoff. From a practical standpoint, however, this inconvenience of little conse-
quence. We measure for appreciable angles of scattering and compare the rela-
tive intensity at these angles to Eq. (1).
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Transformation Back to the Lab Frame

We have been working in the center of mass frame and have found the differ-
ential cross section for scattering, σ(Θ), in this frame, where Θ is the angle of
deviation of the incident beam. Of course, in the center of mass frame, the two
particles have to come in with equal and opposite momenta, and depart with
the same. So, the “target” particle also rebounds atΘ.

With respect to the lab (the rest frame of the target particle, m2), the center of
mass moves at

V = v0
m1

m1 +m2
= v0

µ

m2

where v0 is the velocity of the incident particle in the lab frame. It will turn out
to simplify the algebra to define ρ = m1/m2, in terms of which we have

V = v0
ρ

1+ρ
The incident particle in the center of mass frame, therefore, has velocity

v′1 = v0 −V = v0

1+ρ
We assume elastic scattering of theα particle, so that the outgoing velocity in the
center of mass frame has magnitude |v′1|, but is directed away from the incident
direction by angleΘ, as illustrated in Fig. 3a. Transforming the outgoing velocity
back to the lab frame by adding V as illustrated in Fig. 3b yields outgoing velocity
v1.

Analyzing the triangle formed by the velocity vectors in the lab frame, we have

v1 sinϑ= v ′
1 sinΘ= v0

1+ρ sinΘ (2)

v1 cosϑ= v ′
1 cosΘ+V = v0

(
cosΘ

1+ρ + ρ

1+ρ
)

(3)

v′1

Θ

v ′
1

(a) Center of mass frame

v0

v ′
1

V

v1

ϑ

(b) Lab frame

Figure 3: The collision as viewed in the center of mass and lab frames.
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These two equations suffice to find the scattering angle in the laboratory, ϑ, in
terms of the scattering angle in the center of mass frame, Θ. However, we need
more than this: we want the differential scattering cross section in the lab frame.
The particles that scatter into the angle range Θ to Θ+ dΘ is σ(Θ) 2πsinΘdΘ.
These same particles scatter into the solid angle Σ(ϑ) 2πsinϑdϑ in the lab. Set-
ting these two expressions equal and solving for Σ(ϑ), we have

Σ(ϑ) =σ(Θ)
sinΘdΘ

sinϑdϑ
=σ(Θ)

d(cosΘ)

d(cosϑ)
(4)

Hence, we need to compute cosϑ, which we can do in a couple of steps. Then
we can finish the computation by taking d(cosϑ).

First, divide Eq. (2) by Eq. (3) to get

tanϑ= sinΘ

cosΘ+ρ (5)

Next, square these same two equations and add them together to get

v2
1 =

(
v0

1+ρ
)2 [

sin2Θ+ (cosΘ+ρ)2]= (
v0

1+ρ
)2 [

1+2ρ cosΘ+ρ2] (6)

Taking the square root of this equation and substituting it into Eq. (2) gives

v0

1+ρ
√

1+2ρ cosΘ+ρ2 sinϑ= v0

1+ρ sinΘ

so

sinϑ= sinΘ√
1+2ρ cosΘ+ρ2

(7)

Dividing Eq. (2) by Eq. (5) gives

cosϑ= cosΘ+ρ√
1+2ρ cosΘ+ρ2

(8)

Taking the differential of both sides, we have

−sinϑdϑ= −sinΘdΘ√
1+2ρ cosΘ+ρ2

+ (cosΘ+ρ)(− 1
2 )(−2ρ sinΘ)dΘ

(1+2ρ cosΘ+ρ2)3/2

sinϑdϑ= 1+2ρ cosΘ+ρ2 −ρ cosΘ−ρ2

(1+2ρ cosΘ+ρ2)3/2
sinΘdΘ

= 1+ρ cosΘ

(1+2ρ cosΘ+ρ2)3/2
sinΘdΘ

Combining this result with Eq. (4) yields the desired relation for the scattering
cross section in the laboratory frame,

Σ(ϑ) =
(

Z Z ′e2

8πε0E

)2

csc4
(
Θ

2

)[
(1+2ρ cosΘ+ρ2)3/2

1+ρ cosΘ

]
(9)
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where ϑ and Θ are related by Eq. (5) and ρ = m1/m2. In the case of Rutherford
scattering, the correction term in brackets is rather small, but if the masses of
the two particles are close, it can be significant.
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