
Homework 1 Solution
Due: Monday, 1/26/26, 23:59:59

Problem 1 — Summing a series

Consider the infinite series

(a) Without explicitly summing the series, use an integral test to determine whether it converges.

(b) Sum the series.

Solution

(a) Since , if we can find an integral yielding an upper limit for the simpler sum, we will have shown it is finite. Consider the figure generated below.

import matplotlib.pyplot as plt
%matplotlib widget
import numpy as np

fig, ax = plt.subplots()
ax.set_xlim(0,10)
n = np.arange(1, 10)
ax.bar(n, 1 / n**2, alpha=0.5, width=1, align='edge', edgecolor="#000088", label="$1/n^2$")
ytrue = 1 / (n * (n+1))
ax.bar(n, ytrue, alpha=0.5, width=1, align='edge', edgecolor="k", facecolor='#dddddd', label="$1/n(n+1)$")
x = np.linspace(2, 10, 81)
y = 1 / (x-1)**2
ax.plot(x, y, 'r--')
ax.set_xlabel("$n$")
ax.legend()
ax.annotate(r"$\frac{1}{(n-1)^2}$", (3, 0.4), fontsize='x-large', color="r");

Figure

The area of the shaded blue rectangles is the sum of . (The lighter portions are .) For the rectangles , the area of the rectangles is clearly

smaller than the area under the red dashed curve, which is

Therefore, the sum is indeed bounded.

(b) This sum is straightforward to evaluate exactly:

Problem 2 — Paramagnetism

In the Langevin model of paramagnetic behavior, the magnetization takes the form

where  is a constant and  is proportional to the applied magnetic field.

(a) What is the limiting value of the magnetization as ?

(b) How does the magnetization depend on  as ? Note: I'm not looking for the value of  but the way  depends on  for small values of .

Solution

(a) Recall that  and . As , each goes to , so their ratio goes to one. Hence,

(b) The Taylor series for  is  and that for . So,

Using the binomial approximation , we can approximate the series in the denominator to get

Therefore, for small values of , .

plt.close('all')
fig, ax = plt.subplots()
x = np.linspace(-8, 8, 120)
m = np.cosh(x) / np.sinh(x) - 1 / x
ax.plot(x, m)
# Now add a line through the origin with slope 1/3
xx = np.array([-3, 3])
yy = xx/3
ax.plot(xx, yy, 'r--', label="$x/3$")
ax.set_xlabel("$x$")
ax.set_ylabel("$M(x) / M_0$");

Figure

Problem 3 — Limits

Find the following limits:

(a) 

(b) 

(c) 

Solution

(a) For small , , which means that the term in parentheses tends to  and we need to expand the sine term more carefully:

Now, we can use the binomial expansion, , to invert the first term:

We can run a quick-and-dirty numerical check:

ε = 0.001
1 / np.sin(ε)**2 - 1/ε**2

np.float64(0.33333340007811785)

(b) Let’s attack this one starting with the denominator of the second fraction: , by the binomial

expansion. Combining with the first term, we get

Another quick check:

2/ε + 1 / (1 - np.sqrt(1 + ε))

np.float64(-0.49987506246498015)

(c) Let’s just expand numerator and denominator through quadratic order:

This should work provided that . Quick check:

k = -0.234
(1 - np.cos(k * ε)) / (1 - np.cosh(k * ε))

np.float64(-0.9999999918896704)

Problem 4 — Numerically summing a series

The Riemann zeta function is defined by

When , it is equal to the harmonic series, which we showed does not converge. For , the series does converge, although convergence can be slow for

values of  that are not large.

(a) For , the series converges to . About how many terms do you need to sum to achieve an accuracy of 0.01%? (Use Python and NumPy;

include your commented code in your solution.)

(b) Now consider a way of estimating the series as

where we explicitly sum the first  terms and then approximate the remaining infinite sum via an integral. About how many terms do you need to sum

explicitly to achieve the same 0.01% accuracy using this method? Comment.

zeta2 = np.pi**2 / 6
n, s = 1, 1.0
while (1 - s / zeta2) > 0.0001:
    n += 1
    s += 1 / n**2
print(f"That took {n} terms")

That took 6079 terms

Now we sum through  and then add .

n, s = 1, 1.0
while True:
    n += 1
    s += 1 / n**2
    if n > 10:
        δ = 1 - (s + 1/(n+1)) / zeta2
        if δ > 0 and δ < 1e-4:
            break
print(f"That took {n} terms")

That took 55 terms

Problem 5 — Division of series

One way to develop the Taylor series expansion of  about  is by taking derivatives. An alternative is to divide the series for  by the series for 

and to use the binomial expansion to “bring the denominator to the numerator.” That is, the denominator will have the form

where the term  is the sum of all but the first term. Therefore,

since .

Use this fact to develop the Taylor series for  through at least  and compare your result to

Use matplotlib to prepare a plot comparing your approximation to , and estimate the range over which your expression agrees with the true value within

0.03%.

Solution

If we follow the hint and factor out  from the series for , we have through 

valid for . Let’s collect terms with like powers of :

def tanseries(x, nterms: int=3):
    coeffs = (1, 1/3, 2/15, 17/315, 62/2835)
    ts = x * coeffs[0]
    xp = x.copy()
    for j in range(1, nterms):
        xp *= x**2
        ts += coeffs[j] * xp
    return ts

fig, ax = plt.subplots()
x = np.logspace(-1, 0, 40)
ax.loglog(x, 1 - tanseries(x) / np.tan(x), 'r.', label=r"$x^5$")
ax.loglog(x, 1 - tanseries(x, 4) / np.tan(x), 'g.', label=r"$x^7$")
ax.loglog(x, 1 - tanseries(x, 5) / np.tan(x), 'b.', label=r"$x^9$")
ax.legend()
ax.grid(axis='both', which='both')
ax.set_xlabel("$x$")
ax.set_ylabel("Relative Error");

Figure

I used the np.logspace  function to get equally spaced points on a logarithmic axis. If we use the approximation through , the error reaches 0.1% at about

. For , we make it almost to , and for  to . Having chosen a range from 0.1 to 1 in which the value of  increased by one order of

magnitude, we see that the relative error increased by 6 orders of magnitude. Can you explain that value of 6?
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