Homework 1 Solution

Due: Monday, 1/26/26, 23:59:59

Problem 1 — Summing a series

Consider the infinite series

(a) Without explicitly summing the series, use an integral test to determine whether it converges.

(b) Sum the series.

Solution

0
1
(a) Since S < Z — if we can find an integral yielding an upper limit for the simpler sum, we will have shown it is finite. Consider the figure generated below.

n=1 n

import matplotlib.pyplot as plt
%matplotlib widget
import numpy as np

fig, ax = plt.subplots()

ax.set_x1im(0,10)

n = np.arange(1, 10)

ax.bar(n, 1 / nxx2, alpha=0.5, width=1, align='edge', edgecolor="#000088", label="$1/n"2%$")
ytrue = 1 / (n % (n+l))

ax.bar(n, ytrue, alpha=0.5, width=1, align='edge', edgecolor="k", facecolor='#dddddd', label="$1/n(n+1)$")
np.linspace(2, 10, 81)

1 / (x=1)%x2

.plot(x, vy, 'r——")

ax.set_xlabel("$n$")

ax.legend()

ax.annotate(r"$\frac{1}{(n-1)"2}$", (3, 0.4), fontsize='x-large', color="r");
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The area of the shaded blue rectangles is the sum of 1/n2. (The lighter portions are l/n(n + 1).) For the rectangles n > 2, the area of the rectangles is clearly
smaller than the area under the red dashed curve, which is

o0 1 > 1
flzzj/ ———————-dn::t/n —dz =1
2 (n—1)? 1z’

Therefore, the sum is indeed bounded.

(b) This sum is straightforward to evaluate exactly:

Problem 2 — Paramagnetism

In the Langevin model of paramagnetic behavior, the magnetization takes the form

cosh 1
M = M,
() 0 [ sinhz =« ]

where M) is a constant and x is proportional to the applied magnetic field.
(a) What is the limiting value of the magnetization as £ — 00?

(b) How does the magnetization depend on = as * — 0? Note: I'm not looking for the value of M (0) but the way M (z) depends on x for small values of |z|.

Solution
(a) Recall that cosh z = em_;e—a: and sinh x = em_;_m . As x — 00, each goes to €% /2, so their ratio goes to one. Hence,
lim M(z) = M, (2)
T— 00
(b) The Taylor series for coshz is 1 + 22 /2! + x*/4! + - - - and that forsinhz = = + x3/3! + z°/5! + - - - = 2(1 + 2% /3! + z*/5! + - - ). So,
M(z) 1| 1+z*/2+2%/24+---
My z|1422/6+24/120+---
Using the binomial approximation HL:U ~1—x+ x2/2! + - - -, we can approximate the series in the denominator to get
M(x 1.
(@) = —[(1+2%/24+z*/24+---)(1 — 22/6 + 2*/120 + - - -) — 1]
M() xr
1 1 1
St (=2 ) +0@h) -1
| +z (2 6) + O(z*) ]
x
= g + O(ZE?’)

Therefore, for small values of z, M ~ Mo%-

plt.close('all')

fig, ax = plt.subplots()

X = np.linspace(-8, 8, 120)

m = np.cosh(x) / np.sinh(x) - 1 / x
ax.plot(x, m)

# Now add a line through the origin with slope 1/3
XX = np.array([-3, 3])

yy = xx/3

ax.plot(xx, yy, 'r——', label="$x/3%")
ax.set_xlabel("$x$")
ax.set_ylabel("$M(x) / M_0%$");
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Problem 3 — Limits

Find the following limits:

_ ( 1 1 )
(a) lim —
z—0 SiIl2 T 213‘2

. 2 1
(b) lim (— + )
z—0 \ T 1 — 14+ x

i 1 — coskx
(c) lim < )

z—0 \ 1 — cosh kxz

Solution

(a) For small x, sin x ~ x, which means that the term in parentheses tends to % — % and we need to expand the sine term more carefully:

1 1 1 1
sin” z a2 - 3 2 g2 )
(33 — _|_ . .)
3!
1 x> -2
~—qll——+4+--- —1 4
Al-T) 2
Now, we can use the binomial expansion, (1 + e)” ~ 1+ ne-+ @3 -+ .-+, to invert the first term:
1 2 1
1 _ 1 ~ {1 _+_ x_ _|_ e o0 — 1} [r—
sinx 2 z? 3 3

We can run a quick-and-dirty numerical check:

np.float64(0.33333340007811785)

(b) Let's attack this one starting with the denominator of the second fraction: 1 — /1 +z ~ 1 — {1 + %:c — %mz + -} = =5 (1 — z/4), by the binomial

expansion. Combining with the first term, we get

2,0t 2 1 %E_E(HE):_l
z 1-I+z = S(1-z/4 =z = 4 2
Another quick check:
2/e + 1 / (1 - np.sqrt(1 + €))
np.float64(-0.49987506246498015)
(c) Let's just expand numerator and denominator through quadratic order:
1 —coskx 1—(1—-Fka?/24--) ~ Kz?/2 + - _ 4

1—coshkz ~ 1—(1+k22/2+---) —k2z2/2+---

This should work provided that k % 0. Quick check:

k = -0.234
(1 = np.cos(k x €)) / (1 = np.cosh(k * €))

np.float64(-0.9999999918896704)

Problem 4 — Numerically summing a series

The Riemann zeta function is defined by

=3 @

When v = 1, it is equal to the harmonic series, which we showed does not converge. For v > 1, the series does converge, although convergence can be slow for
values of v that are not large.

(a) For v = 2, the series converges to 7r2/6 ~ 1.64493. About how many terms do you need to sum to achieve an accuracy of 0.01%? (Use Python and NumPy;
include your commented code in your solution.)

(b) Now consider a way of estimating the series as

11 1 o, 1
S=1+—+—+-+—0o+Y = 6
22 = 32 (n—1)? ;jz ®)

where we explicitly sum the first n — 1 terms and then approximate the remaining infinite sum via an integral. About how many terms do you need to sum
explicitly to achieve the same 0.01% accuracy using this method? Comment.

zeta2 = np.pikx2 / 6

n, s=1, 1.0

while (1 - s / zeta2) > 0.0001:
n += 1
S += 1 / nxk2

print(f"That took {n} terms")

That took 6079 terms

Now we sum through (n — 1) and then add fnoo é dz = .

n, s=1, 1.0
while True:

n += 1
S += 1 / n%kk2
if n > 10:

6 =1- (s + 1/(n+l)) / zeta2
if 6 > 0 and 6 < le-4:
break
print(f"That took {n} terms")

That took 55 terms

Problem 5 — Division of series

One way to develop the Taylor series expansion of tan « about £ = 0 is by taking derivatives. An alternative is to divide the series for sin x by the series for cos x
and to use the binomial expansion to “bring the denominator to the numerator.” That is, the denominator will have the form

1 1
2 A =1
1 2!:13 + 4!:B 1—gq
where the term —gq is the sum of all but the first term. Therefore,
. sin az3+w5 (14atq+-)
anxr = = | xr— — —_— e
cCos T 3! 5! T4

sincel/(1—q)=1+q+¢*+¢>+---.
Use this fact to develop the Taylor series for tan x through at least 2° and compare your result to

ta . 3 n 22" N 1727 n 62" .
nr==e
3 15 315 2835

Use matplotlib to prepare a plot comparing your approximation to tan x, and estimate the range over which your expression agrees with the true value within
0.03%.

Solution

If we follow the hint and factor out  from the series for sin x, we have through z’

33'2 CC4 CC6 .’132 CLA 51)'6 .’L‘z 2134 2 .’,U2 3
ta”%m(l 3 B +"'>{1+(21 T 6!)+(§Z+”'> +(7_”') }

valid for |x| < 1. Let's collect terms with like powers of x:

zl:1x1=1
1 1 1
3. - _ — — =
T2 6 3
,, L1 1,1 16 2
T 920 6x2 24 4 120 15
. —14+21+35-210+7—7-6-5+3:5-6-7
x' .

7!
 55-210+7(1+60) 272 16-17 17 17
B 7! 77 3.5.3.7 315

def tanseries(x, nterms: int=3):
coeffs = (1, 1/3, 2/15, 17/315, 62/2835)
ts = x * coeffs[0]
xp = x.copy()
for j in range(1l, nterms):
Xp k= X*k%2
ts += coeffs[j]l * xp
return ts

fig, ax = plt.subplots()

X = np.logspace(-1, 0, 40)

ax.loglog(x, 1 - tanseries(x) / np.tan(x), 'r.', label=r"$x~5%$")
ax.loglog(x, 1 - tanseries(x, 4) / np.tan(x), 'g.', label=r"$x"7$")
ax.loglog(x, 1 - tanseries(x, 5) / np.tan(x), 'b.', label=r"$x"9%$")
ax.legend()

ax.grid(axis="both', which="both"')

ax.set_xlabel("$x3$")

ax.set_ylabel("Relative Error");
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| used the np. logspace function to get equally spaced points on a logarithmic axis. If we use the approximation through x®, the error reaches 0.1% at about
x = 0.5. For 27, we make it almost to z = 0.7, and for 2 to = 0.8. Having chosen a range from 0.1 to 1 in which the value of x increased by one order of
magnitude, we see that the relative error increased by 6 orders of magnitude. Can you explain that value of 6?



