

Homework 3

Due: Monday, 2/9/26, 23:59:59

Problem 1 — Unitary matrices

Show that $\mathbb{U} = e^{\mathbb{A}}$ is unitary if and only if \mathbb{A} is anti-Hermitian, $\mathbb{A}^\dagger = -\mathbb{A}$.

Problem 2 — Rotating a Spin-1/2 Particle

The operator that rotates the state of a spin-1/2 particle around the x axis through angle ϕ is

$$\hat{R}_x(\phi) = e^{-i\hat{S}_x\phi/\hbar}$$

where \hat{S}_x is the angular momentum operator along the x direction. We say that angular momentum is the *generator of rotation*.

The basis of the eigenstates of spin along the z axis has two orthonormal states: $|\uparrow\rangle$ and $|\downarrow\rangle$. In this basis, the matrix representing \hat{S}_x has the form

$$\hat{S}_x \xrightarrow{\hat{S}_z \text{ basis}} \frac{\hbar}{2} \mathbb{X} \quad \text{where} \quad \mathbb{X} \equiv \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

- Describe in words what the matrix \mathbb{X} does. What happens when you apply it twice?
- Using the Taylor series for the exponential function, write out enough terms of the matrix representation of $\hat{R}_x(\phi)$ that you see the pattern and can sum it to yield a simple 2×2 matrix.
- Show that multiplying the matrix representation of $\hat{R}_x(\phi)$ by its adjoint (conjugate transpose) yields the identity. This shows that $\hat{R}_x(\phi)$ is a unitary operator.

Problem 3 — Orthonormal basis

Find the coefficients $a_0, b_0, b_1, c_0, c_1, c_2$ such that

$$\{a_0, b_0 + b_1 t, c_0 + c_1 t + c_2 t^2\}$$

form orthonormal polynomials on $(0, 1)$ using the inner product

$$\langle f, g \rangle = \int_0^1 f(t)g(t) dt$$

Problem 4 — Invertibility

For which values of α are the following matrices invertible? Find the inverses whenever possible. (You may do this analytically or by using code, or both!)

$$\mathbb{A} = \begin{pmatrix} 1 & \alpha & 0 \\ \alpha & 1 & \alpha \\ 0 & \alpha & 1 \end{pmatrix} \quad \mathbb{B} = \begin{pmatrix} 0 & 1 & \alpha \\ 1 & \alpha & 0 \\ \alpha & 0 & 1 \end{pmatrix}$$

Problem 5 — Thermal average energy of a simple harmonic oscillator

By midsemester in Physics 52, you will show that the energy levels of a simple harmonic oscillator of angular frequency ω are

$$\epsilon_n = \hbar\omega \left(n + \frac{1}{2} \right) \quad \text{where} \quad n = 0, 1, 2, \dots$$

That is, the energy of the oscillator is quantized in units of $\hbar\omega$, with a minimum energy (zero-point offset) of $\hbar\omega/2$.

When such an oscillator is in contact with a reservoir held at absolute temperature T , its energy is not fixed. Rather, the probability of observing it to have any particular energy depends on the ratio of that energy to thermal energy, defined as $k_B T$, where k_B is Boltzmann's constant (1.38×10^{-23} J/K). Specifically, the probability that the oscillator will have energy ϵ_n is given by

$$P(n) = \frac{e^{-\beta\epsilon_n}}{Z}$$

where $\beta \equiv \frac{1}{k_B T}$ and

$$Z = \sum_{n=0}^{\infty} e^{-\beta\epsilon_n}$$

is called the **partition function**. (It's just the sum of all the Boltzmann factors; dividing by Z produces a normalized probability.) Therefore, the average energy in the oscillator is

$$\bar{E} = \sum_{n=0}^{\infty} P(n)\epsilon_n = \sum_{n=0}^{\infty} \frac{\epsilon_n e^{-\beta\epsilon_n}}{Z}$$

Write a function to compute the (approximate) thermal average energy in an oscillator of angular frequency ω at temperature T by summing N terms in the series. Make a plot of $\bar{E}(x)$, where $x = k_B T / \hbar\omega$ for $0.025 \leq x \leq 2$. (Note that the "right" way to handle dimensions such as temperature and energy is to define a variable x that is formed by a dimensionless ratio, as we do here.)

NB: Should you wish to compare your result to the exact expression, the following results are derived early in Physics 117 (Statistical Mechanics and Thermodynamics),

$$\bar{E} = -\frac{\partial(\ln Z)}{\partial\beta} \quad \text{and} \quad Z = \frac{1}{2 \sinh(\beta\hbar\omega/2)}$$

Here's the template:

In [1]: `def energy(N:int, x:float) -> float:`

Using the first N terms of the sum that gives the energy of an oscillator in contact with a heat reservoir at absolute temperature T , estimate its average energy.

Inputs:

N : the number of terms to include in the sum
 b : the dimensionless ratio of thermal energy to the energy, quantum, $k_B T / \hbar\omega$.

Output:

average energy / $\hbar\omega$

In []: