Spring 2023 

Astronomy 62 — Introduction to Astrophysics
A general survey of modern astrophysics. Topics covered include electromagnetic radiation, gravitation, stellar structure and evolution, the interstellar medium and the birth of stars, supernovae and the death of stars (including the physics of neutron stars and black holes), synthesis of the elements, and the formation, structure and evolution of galaxies and of the universe. Offered jointly with Pomona and Keck Sciences.

Core 79 — STEM and Social Impact: Climate Change
In this course our focus is to prepare Harvey Mudd students for the lifelong challenge of fostering "a clear understanding of the impact of their work on society." We will use climate change as an opportunity to explore the impact of our work on society. There are four primary components of that exploration: critical analysis of the social context of STEM, the expansion and application of concepts from the core to understand this socialtechnical problem, collaborative projects that promote positive change in the world, and communicating our project designs and professional choices. Plenary sessions will explore topics such as environmental justice, earth system science, the relation between expertise and power, policy processes, data science, community engagement, multidisciplinary collaboration, impactful careers, and science communication. Individual sections will explore particular climaterelated issues in greater depth. Final team projects will challenge students to apply these concepts in proposals for climate solutions. Open to HMC students only. 
Physics 24 — Mechanics and Wave Motion
Classical mechanics is introduced beginning with inertial frames and the Galilean transformation, followed by momentum and momentum conservation in collisions, Newton's laws of motion, spring forces, gravitational forces and friction. Differential and integral calculus are used extensively throughout. Work, kinetic energy and potential energy are defined, and energy conservation is discussed in particle motion and collisions. Rotational motion is treated, including angular momentum, torque, crossproducts and statics. Other topics include rotating frames, pseudoforces and centralforce motion. Simple harmonic and some nonlinear oscillations are discussed, followed by waves on strings, sound and other types of waves, and wave phenomena such as standing waves, beats, twoslit interference, resonance and the Doppler effect. 
Physics 49B — The Science of Cooking
This course is designed as a “hands on” course. In the words of Thomas Dewey, “Learn by doing.” We will discuss what is going on when we prepare food and what goes on after we consume it. Every day, without a second thought, we pop things into the microwave, toss dinner on the BBQ, heat something up on the stovetop, whip something up with our mixer or run it through our food processor. We heat stuff, we cool stuff and we freeze stuff. We use pots and pans made of cast iron, stainless steel, glass, aluminum and copper. We set temperatures and we set timers. We boil, simmer, braise, caramelize, liquefy, steep, brew and marinate. Did you ever stop to think that there is a method to the madness? Those seemingly abstract concepts of wave mechanics, electricity and magnetism, thermodynamics, statistical mechanics, solid state physics and even quantum mechanics dictate how tasty and healthy your meal ends up being. But what about nutrition and health...? Can we bake our cake and eat it too? It’s all about conservation of energy! In this country we spend in excess of $40 billion dollars a year on dieting and another 2.6 billion on gym memberships. Is this all a scam, a hopeless quest? Consider that 68.8% of US adults are either overweight or obese (CDC). Obesity is a contributing factor is deaths due to heart disease, cancer, stroke, kidney disease and diabetes (CDC). Losing as little as 5 to 7 percent of a person’s total body weight lowers blood pressure, improves sugar levels, and lowers diabetes by nearly 60% in those with pre diabetes (CDC). The average size of a bagel in the US more than doubled between 1983 and 2003 (going from 4 inches in diameter and 140 calories to 6 inches in diameter and 350 calories (National Heart Lung and Blood Institute). At the current rate of increase, yearly obesity related healthcare costs are expected to exceed $300 billion dollars by 2018 — up from the reported $147 billion in 2008. Can we have it all? Can we prepare amazing meals and treats and still retain our health. Take the course and find out! 
Physics 50 — Physics Laboratory
This course emphasizes the evidencebased approach to understanding the physical world through handson experience, experimental design, and data analysis. Experiments are drawn from a broad range of physics subjects, with applications relevant to modern society and technology.

Physics 52 — Quantum Physics
The development and formulation of quantum mechanics, and the application of quantum mechanics to topics in atomic, solid state, nuclear, and particle physics.

Physics 54 — Modern Physics Lab
Classical experiments of modern physics, including thermal radiation and Rutherford scattering. Nuclear physics experiments, including alpha, beta and gamma absorption, and gamma spectra by pulse height analysis. Analysis of the buildup and decay of radioactive nuclei.

Physics 64 — Mathematical and Computational Methods for Physicists
This course combines mathematical and computational methods that are useful for studying physical systems. Topics include: Linear algebra, Hilbert spaces, the eigenvalue problem and numerical algorithms for solving problems in linear algebra, including various modes of decomposition; Fourier series and transforms, convolution, correlation and numerical methods using fast Fourier transforms; computer simulation methods based on integrating coupled differential equations and also using pseudorandom numbers, including Monte Carlo methods; partial differential equations, separation of variables, Laplace and Poisson equations in various dimensions, the wave equation, and numerical approaches to solution. 
Physics 116 — Quantum Mechanics
The elements of nonrelativistic quantum mechanics. Topics include the general formalism, onedimensional and threedimensional problems, angular momentum states, perturbation theory and identical particles. Applications to atomic and nuclear systems.

Physics 134 — Optics Laboratory
A laboratorylecture course on the techniques and theory of classical and modern optics. Topics of study include diffraction, interferometry, Fourier transform spectroscopy, grating spectroscopy, lasers, quantum mechanics and quantum optics, coherence of waves and leastsquares fitting of data.

Physics 154 — Fields and Waves
The theory of deformable media. Field equations for elastic and fluid media and for conducting fluids in electromagnetic fields. Particular emphasis on body and surface wave solutions of the field equations.

Physics 162 — Solid State Physics
Selected topics in solidstate physics, including lattice structure, lattice excitations, and the motion and excitations of electrons in metals.

Physics 172 — General Relativity and Cosmology
The principle of equivalence, Riemannian geometry, and the Schwarzschild and cosmological solutions of the field equations.

Physics 194 — Physics Clinic
Team projects in applied physics, with corporate affiliation.

Physics 195 — Physics Colloquium
Oral presentations and discussions of selected topics, including recent developments. Participants include physics majors, faculty members, and visiting speakers. Required for all junior and senior physics majors. No more than 2.0 credits can be earned for departmental seminars/colloquia.

Fall 2023 (Tentative) 

Astronomy 101 — Observational Astronomy
Complete survey of the techniques of observational astronomy, including optical, infrared, radio and Xray astronomy. Four to six observational projects, including observations using The Claremont Colleges Table Mountain Observatory, plus computer projects analyzing radio and infrared data. Observational techniques used include CCD photometry, stellar spectroscopy, radio interferometry and analysis of infrared satellite data. In addition to observational techniques, the course will also cover the physics of basic emission mechanisms at the various wavelengths. Offered jointly with Pomona and Keck Sciences.

Physics 23 — Special Relativity
Einstein's special theory of relativity is developed from the premises that the laws of physics are the same in all inertial frames and that the speed of light is a constant. The relationship between mass and energy is explored and relativistic collisions analyzed. The families of elementary particles are described and the equivalence principle developed. 
Physics 51 — Electromagnetic Theory and Optics
An introduction to electricity and magnetism leading to Maxwell's electromagnetic equations in differential and integral form. Selected topics in classical and quantum optics. 
Physics 111 — Theoretical Mechanics
The application of mathematical methods to the study of particles and of systems of particles; Newton, Lagrange, and Hamilton equations of motion; conservation theorems; central force motion, collisions, damped oscillators, rigid body dynamics, systems with constraints, variational methods.

Physics 117 — Statistical Mechanics
Classical and quantum statistical mechanics, including their connection with thermodynamics. Kinetic theory of gases. Applications of these concepts to various physical systems.

Physics 133 — Electronics Laboratory
An intermediate laboratory in electronics involving the construction and analysis of rectifiers, filters, transistor and operational amplifier circuits.

Physics 151 — Electromagnetic Fields
The theory of static and dynamic electromagnetic fields. Topics include multipole fields, Laplace's equation, the propagation of electromagnetic waves, radiation phenomena and the interaction of the electromagnetic field with matter.

Physics 161 — Topics in Quantum Theory
Scattering, including the Born approximation and partial wave expansion. Path integrals. Timedependent perturbation theory. Quantum theory of the electromagnetic field.

Physics 181 — Advanced Laboratory
Experiments are selected from the fields of nuclear and solidstate physics, biophysics, quantum mechanics and quantum optics, and atomic, molecular and optical physics. Fasttime coincidence instrumentation and photoncounting detectors are employed, as well as an Xray machine and a UV/VIS/ NIR spectrophotometer.

Physics 183 — Teaching Internship
An Introduction to K–12 classroom teaching and curriculum development. Internship includes supervision by an appropriate K–12 teacher and a member of the physics department and should result in a report of a laboratory experiment, teaching module, or other education innovation or investigation. Internship includes a minimum of three hours per week of classroom participation.

Physics 191 — Physics Research
Original experimental or theoretical investigations in physics undertaken in consultation with a faculty member. Projects may be initiated by the student or by a faculty member. Present faculty research areas include astronomy, atomic and nuclear physics, optics, solidstate and lowtemperature physics, general relativity, quantum mechanics, particle physics, geophysics and biophysics.

Physics 193 — Physics Clinic
Team projects in applied physics, with corporate affiliation.

Physics 195 — Physics Colloquium
Oral presentations and discussions of selected topics, including recent developments. Participants include physics majors, faculty members, and visiting speakers. Required for all junior and senior physics majors. No more than 2.0 credits can be earned for departmental seminars/colloquia.

Physics 197 — Readings in Physics
Directed reading in selected topics. 13 credit hours per semester. Signed form required.

Writing 1 — Introduction to Academic Writing
A seminar devoted to effective writing strategies and conventions that apply across academic disciplines. The course emphasizes clarity, concision, and coherence in sentences, paragraphs, and arguments. 