Thomas D. Donnelly

Professor (1997)
PhD California, UC Berkeley
High-intensity laser physics and fluid dynamics
Keck 1239
909-607-1843 (office)
909-621-8024 (department)
909-621-8887 (fax)

A century ago, the shortest time interval that could be measured, a millisecond, was available from streak-recording methods, and by 1965 the capabilities of high-frequency electronic circuitry had reduced this limit to a nanosecond. The time-resolution limit dropped precipitously after 1965 due to the invention of the laser and is now less than 1 fs (\(10^{-15} {\rm s} \)). These ultrafast laser pulses provide a tool for exploring nature in a previously inaccessible time domain; the evolution of nonequilibrium materials can be resolved, chemical reactions can be controlled, phase transitions can be monitored, and energy can be impulsively deposited into materials to create high-energy-density states of matter.

The Donnelly group carries out experiments to study the interaction of high-intensity laser light with novel microstuctured targets. We develop machines that are capable of producing novel micron and sub-micron sized targets that are developed to study topics such as laser-driven nuclear fusion and the heating mechanisms which allow laser energy to be absorbed on short timescales by solid-density materials. We build, characterize, and do science with our machines at Harvey Mudd, as well as with our collaborators at the University of Texas at Austin where we have access to some of the most powerful laser systems ever built.

Requesting a letter of reference   Mie Codes

Recent Publications

Calvin Leung and Thomas D. Donnelly

Measuring the spatial resolution of an optical system in an undergraduate optics laboratory

American Journal of Physics 85 (2017) 429-438.
Figure 10

C. J. Price, Thomas D. Donnelly, S. Giltrap, N. H. Stuart, S. Parker, S. Patankar, H. F. Lowe, D. Drew, E. T. Gumbrell, and R. A. Smith

An in-vacuo optical levitation trap for high-intensity laser interaction experiments with isolated microtargets

Review of Scientific Instruments 86 (2015) 033502.
RSI Donnelly 2015
More publications