# Recent Publications

•

It was shown in a recent paper [J. Math. Phys. (N.Y.) 60, 102502 (2019)] that slowly lowering an electric charge into a Schwarzschild-Tangherlini (ST) black hole endows the final state with electric multipole fields, which implies that the final-state geometry is not Reissner-Nordström-Tangherlini in nature. This conclusion departs from the four-dimensional case in which the no-hair theorem (NHT) requires the final state to be a Reissner-Nordström black hole. To better understand this discrepancy clearly requires a deeper understanding of the origin of the multipole hair in the higher-dimensional case. In this paper, we advance the conjecture that charged, static, and asymptotically flat higher-dimensional black holes can acquire electric multipole hair only after they form. This supposition derives from studying the asymptotic behavior of the field of a multipole charge onto which a massive and hyperspherical shell with an exterior ST geometry is collapsing. In the mathematical limit as the shell approaches its ST radius, we find that the multipole fields (except the monopole) vanish. This implies that the only information of an arbitrary (but finite) charge distribution inside the collapsing shell that is available to an asymptotic observer is the total electric charge. Our results yield considerable insight into how higher-dimensional black holes acquire electric multipole hair, and also imply that, in four dimensions, the fadeaway of multipole moments during gravitational collapse is not strictly because of the NHT.

Biological membranes are composed of lipid bilayers that are often asymmetric with regards to the lipid composition and/or aqueous solvent they separate. Studying lipid asymmetry both experimentally and computationally is challenging. Molecular dynamics simulations of lipid bilayers with asymmetry are difficult due to finite system sizes and time scales accessible to simulations. Due to the very slow flip-flop rate for phospholipids, one must first choose how many lipids are on each side of the bilayer, but the resulting bilayer may be unstable (or metastable) due to differing tensile and compressive forces between leaflets. Here we use molecular dynamics simulations to investigate a number of different asymmetric membrane systems, both with atomistic and coarse-grained models. Asymmetries studied include differences in number of lipids, lipid composition (unsaturated and saturated tails and different headgroups), and chemical gradients between the aqueous phases. Extensive analysis of the bilayers’ properties such as area per lipid, density, and lateral pressure profiles are used to characterize bilayer asymmetry. We also address how cholesterol (which flip-flops relatively quickly) influences membrane asymmetries. Our results show how each leaflet is influenced by the other and can mitigate the structural changes to the bilayer overall structure. Cholesterol can respond to changes in bilayer asymmetry to alleviate some of the effect on the bilayer structure, but that will alter its leaflet distribution, which in turn affects its chemical potential. Ionic imbalances are shown to have a modest change in bilayer structure, despite large changes in the electrostatic potential. Bilayer asymmetry can also induce a modest electrostatic potential across the membrane. Our results highlight the importance of membrane asymmetry on bilayer properties, the influence of lipid headgroups, tails and cholesterol on asymmetry, and the ability of lipids to adapt to different environments.

The inherent force–velocity trade-off of muscles and motors can be overcome by instead loading and releasing energy in springs to power extreme movements. A key component of this paradigm is the latch that mediates the release of spring energy to power the motion. Latches have traditionally been considered as switches; they maintain spring compression in one state and allow the spring to release energy without constraint in the other. Using a mathematical model of a simplified contact latch, we reproduce this instantaneous release behaviour and also demonstrate that changing latch parameters (latch release velocity and radius) can reduce and delay the energy released by the spring. We identify a critical threshold between instantaneous and delayed release that depends on the latch, spring, and mass of the system. Systems with stiff springs and small mass can attain a wide range of output performance, including instantaneous behaviour, by changing latch release velocity. We validate this model in both a physical experiment as well as with data from the Dracula ant, Mystrium camillae, and propose that latch release velocity can be used in both engineering and biological systems to control energy output.

We propose a simple model in which the baryon asymmetry and dark matter are created via the decays and inverse decays of QCD-triplet scalars, at least one of which must be in the TeV mass range. Singlet fermions produced in these decays constitute the dark matter. The singlets never reach equilibrium, and their coherent production, propagation, and annihilation generates a baryon asymmetry. We find that the out-of-equilibrium condition and the dark matter density constraint typically require the lightest scalar to be long-lived, giving good prospects for detection or exclusion in current and upcoming colliders. In generalizing the leptogenesis mechanism of Akhmedov, Rubakov and Smirnov, our model expands the phenomenological possibilities for low-scale baryogenesis.

Charge order is now accepted as an integral constituent of cuprate high-temperature superconductors, one that is intimately related to other electronic instabilities including anti-ferromagnetism and superconductivity. Unlike conventional Peierls density waves, the charge correlations in cuprates have been predicted to display a rich momentum space topology depending on the underlying fermiology. However, charge order has only been observed along the high-symmetry Cu–O bond directions. Here, using resonant soft X-ray scattering, we investigate the evolution of the full momentum space topology of charge correlations in \( T'-\mathrm{(Nd,Pr)_2 CuO_4} \) as a function of electron doping. We report that, when the parent Mott insulator is doped, charge correlations first emerge with full rotational symmetry in momentum space, indicating glassy charge density modulation in real space possibly seeded by local defects. At higher doping levels, the orientation of charge correlations is locked to the Cu–O bond directions, restoring a more conventional long-ranged bidirectional charge order. Through charge susceptibility calculations, we reproduce the evolution in topology of charge correlations across the antiferromagnetic phase boundary and propose a revised phase diagram of \( T'-\mathrm{Ln_2 CuO_4} \) with a superconducting region extending toward the Mott limit.

We study the field of an electric point charge that is slowly lowered into an \( n + 1 \) dimensional Schwarzschild-Tangherlini black hole. We find that if \( n > 3 \), then countably infinite nonzero multipole moments manifest to observers outside the event horizon as the charge falls in. This suggests the final state of the black hole is not characterized by a Reissner-Nordström-Tangherlini geometry. Instead, for odd \( n \), the final state either possesses a degenerate horizon, undergoes a discontinuous topological transformation during the infall of the charge, or both. For even \( n \), the final state is not guaranteed to be asymptotically flat.

The discovery of quantum oscillations in hole- and electron-doped cuprate families has underscored the importance of the Fermi surface in cuprate superconductivity. While the observed quantum oscillations in both families have revealed the presence of reconstructed Fermi surfaces, there remains an important distinction between the two. In hole-doped cuprates the oscillations are thought to arise from the effects of a charge density wave, while in the electron-doped cuprates it is thought that these oscillations occur from an antiferromagnetically reconstructed Fermi surface, despite the fact that the oscillations are observed in overdoped compounds, far from the putative antiferromagnetic critical point. In this work we study thin films of \( \mathrm{Pr_2 Cu O_{4 \pm \delta}} \), whose apparent doping can be finely tuned by annealing, allowing studies of quantum oscillations in samples straddling the critical point. We show that even though there is a mass enhancement of the quasiparticles, there are only small changes to the Fermi surface itself, suggesting that charge order is a more likely origin, with electronic correlations that are strongly dependent on the structural parameters.

The description of disorder-induced electron localization by Anderson over 60 years ago began a quest for novel phenomena emerging from electronic interactions in the presence of disorder. Even today, the interplay of interactions and disorder remains incompletely understood. This holds in particular for strongly disordered materials where charge transport depends on ‘hopping’ between localized sites. Here we report an unexpected spin sensitivity of the electrical conductivity at the transition from diffusive to hopping conduction in a material that combines strong spin-orbit coupling and weak inter-electronic interactions. In thin films of the disordered crystalline phase change material \( \mathrm{SnSb_2 Te_4} \), a distinct change in electrical conductance with applied magnetic field is observed at low temperatures. This magnetoconductance changes sign and becomes anisotropic at the disorder-driven crossover from strongly localized (hopping) to weakly localized (diffusive) electron motion. The positive and isotropic magnetoconductance arises from disruption of spin correlations that inhibit hopping transport. This experimental observation of a recently hypothesized “spin memory” demonstrates the spin plays a previously overlooked role in the disorder-driven transition between weak and strong localization in materials with strong spin–orbit interactions.

•