Junior and senior physics majors attend our biweekly colloquium series, held on Tuesday afternoons at 4:30 pm in Shanahan B460. The talks are open to all students and to the public, and are frequently attended by scientists from the other Claremont Colleges, Cal Poly Pomona, and others. The series features speakers from a broad range of institutions and fields of physics.
HMC Physics Colloquium shot
Oct. 16, 2007 Bob McKeown, Caltech
Neutrino Masses and Oscillations: Triumphs and Challenges
The recent progress in establishing the existence of finite neutrino masses and mixing between generations of neutrinos has been remarkable. The combined results from studies of atmospheric neutrinos, solar neutrinos, and reactor antineutrinos paint an intriguing picture that clearly requires modification of the standard electroweak model. These results also provide clear motivation for future experimental studies involving oscillations with nuclear ...
Oct. 2, 2007 Peter So (’86), Massachusetts Institute of Technology
Frontiers in Optical Biomolecular Imaging
In the post-genomic era, a central challenge of modern biology and medicine is the need to understand how the interactions of protein machines affect the physiology and the pathology of cells and tissues. Optical imaging and spectroscopy afford unprecedented opportunities in studying these dynamical processes in vivo. In this lecture, I will focus on two microscopy technologies. First, high through-put ...
Sept. 18, 2007 Dwight L. Whitaker, Pomona College
Captivating and Chilling: An All-Optical Method for Making Bose-Einstein Condensates
We have developed a system to create Bose-Einstein condensates (BECs) in a time varying optical dipole trap produced by a single focused CO2 laser. Our system can cool up to a million atoms to quantum degeneracy in any hyperfine states. We have also found that our trap provides a temperature stability and precision that is better than any "conventional" BEC ...
Sept. 11, 2007 Six HMC Students, Harvey Mudd College
Off-Campus Research in the Summer of 2007
Sam Eisenberg, Max Gibiansky, David Coats, Stephen Rosenthal, Will Tipton, and Meredith Rawls will describe how they landed their summer research positions and what they were like.
April 24, 2007 Eric E. Fullerton, University of California at San Diego
Characterizing Magnetic Materials on the Nano-Scale Using Synchrotron X-Rays
Magnetic materials and devices have played a major role in science and technology for the last half century. Hard disk drives dominate information storage and magnetic random access memory (MRAM) is emerging in the memory market. Present magnetic devices are complex metal hetero-structures that combine many layers and state-of-the-art lithography. A key component for continued development of such nano-technologies is ...
April 17, 2007 Ashley Stroupe, Jet Propulsion Laboratory
Robotic Planetary Science: the Mars Exploration Rovers and Beyond
One of the primary tasks of the Jet Propulsion Lab is robotic planetary science. This talk will discuss the current state of the art in planetary rovers, the Mars Exploration Rovers, focusing in particular on their autonomous capabilities. There will also be details of some of the scientific results of the MER mission. Several limitations are still inherent in the ...
April 3, 2007 Roger Falcone, University of California at Berkeley
Watching Atoms Move With Ultrafast X-Rays
I will discuss experiments which study the dynamics of atoms in materials. This work utilizes fast x-ray pulses to probe the motion of atoms that have been excited by fast laser pulses. I will also discuss new synchrotron-based sources of x-rays, plans for a new generation of x-ray free-electron lasers, and opportunities for new science.
March 20, 2007 David Hafemeister, Cal Poly San Luis Obispo
Physics of Sustainability
Sustainability movement will be defined and described. The physics part of sustainability is driven by energy use and environmental impacts. Recent data on energy and climate change will be displayed. This will be followed by back-of-the-envelope calculations, which prove the following:

  • King Hubbert’s equations for oil production are modified, using supply and demand economics. The additional production from ...
March 6, 2007 Robert H. Kraus, Jr., Los Alamos National Laboratory
Imaging Human Brain Function, or, Can We “Read Your Thoughts?”
A variety of techniques have been developed to noninvasively image human brain function that are central to understanding how the brain works and to detect pathology. Current methods can be broadly divided into those that rely on hemodynamic responses as indicators of neural activity and methods that measure neural activity directly. All of the functional brain imaging approaches in use ...
Feb. 20, 2007 Several HMC Professors, Harvey Mudd College
Recent Developments in Physics
Four HMC physics faculty will present brief summaries of some of the year’s most interesting developments in physics.
  1. "Electron Magnetic Moment to 1 Part Per Billion: How to Measure It and Why We Care," Theresa Lynn
  2. "How to Go Into Physics AND Make a Pile of Money," Tom Donnelly
  3. "A Stochastic Background of Gravitational Waves from Hybrid Preheating," Vatche ...
Feb. 6, 2007 Elizabeth D. Freeland, Chicago Art Institute
Pushing the Limits of the Standard Model With Lattice QCD
The Standard Model of particle physics has been extraordinarily successful. Nevertheless, there are many observations which motivate particle physicists to look for and understand physics "beyond the standard model." My talk focuses on a major theoretical challenge in this task - the non-perturbative calculation of quantum chromodynamics (QCD) quantities. Starting with a description of the Standard Model, I will explain ...
Jan. 23, 2007 Tom Banks, University of California at Santa Cruz
String Theory and Holography: An Approach to the Quantum Theory of Gravity
String theory provides us with a number of examples of well defined quantum theories of gravitation in asymptotically flat and asymptotically Anti de Sitter (maximally symmetric space with negative cosmological constant) space-times. For low space-time curvature, these theories have an exact symmetry between bosonic and fermionic particles (supersymmetry) which is not shared by the real world. The problem of relating ...
Dec. 5, 2006 Bridget Smith-Konter, University of California at San Diego
Stress Evolution of the San Andreas Fault System
The absence of a major earthquake over the past 300 years along the southern San Andreas fault has prompted a large-scale effort toward understanding the nature of present-day loading and stress accumulation at the plate boundary. The growing archive of GPS data in California is beginning to provide a detailed synoptic picture of the accumulation of stress and strain along ...
Nov. 21, 2006 Ken Cooper, Jet Propulsion Laboratory
Artificial Atoms on a Chip: The Road to Quantum Computation?
A quantum computer, if ever constructed, will be able to crack problems that would take a modern computer longer than the age of the universe to solve. While classical computers store information as bits - 1’s and 0’s - quantum computers rely on "qubits," which are quantum two-state systems capable of existing as a 1 and 0 simultaneously. One promising ...
Nov. 7, 2006 David McComas, Southwest Research Institute
The Interstellar Boundary Explorer (IBEX): Discovering The Interaction Between Our Solar System and the Galaxy
The Interstellar Boundary Explorer (IBEX) mission ( will launch in mid-2008 and provide the first global views of the interstellar interactions and boundaries at the edge of our heliosphere (the region dominated by the Sun’s influence). IBEX makes these exploratory observations using two ultra-high sensitivity single pixel energetic neutral atom (ENA) cameras that image ENAs from 10 eV - ...