HMC Physics Colloquium

Tuesdays at 16:30 in Shanahan Center for Teaching and Learning, Room B460

Ari Weinstein

HRL Labs

Encoded Silicon Qubits: A High-Performance & Scalable Platform for Quantum Computing

April 25, 2023

For quantum computers to achieve their promise, regardless of the qubit technology, significant improvements to both performance and scale are required. Quantum-dot-based qubits in silicon have recently enjoyed dramatic advances in fabrication and control techniques. The “exchange-only” modality is of particular interest, as it avoids control elements that are difficult to scale such as microwave fields, photonics, or ferromagnetic gradients. In this control scheme, the entirety of quantum computation may be performed using only asynchronous, baseband voltage pulses on straightforwardly tiled arrays of quantum dots. The pulses control only a single physical mechanism, the exchange interaction, which exhibits low control crosstalk and exceptionally high on/off ratios. Exchange enables universal logic within a qubit encoding that is robust against certain correlated errors. These aspects collectively provide a compelling path toward fault-tolerance. HRL Laboratories has recently demonstrated universal quantum logic of encoded exchange-only Si spin qubits, including two-qubit gates performed on arrays of six quantum dots. In this colloquium, we will introduce the fabrication and operation principles of these encoded Si qubit devices, and we will show recent experimental results.